WA9 Weiss problems
[bookmark: _GoBack]

Weiss 8.7
[image:]

[image:][image:]
Be sure to also read the instructions on the assignment page.
[image:]
[image:]

[image:]

image6.png
19.8 Show the result of inserting items 1 through 15 in order in an initially
empty AVL tree. Generalize t}us result (with proof) to show what hap-
pens when items 1 through 2% 1 are inserted into an initially empty
AVL tree.

image1.png
87 Suppose that we exchange elements a[i] and a[i+k], which were
originally out of order. Prove that at least 1 and at most 2k — 1 inver-
sions are removed.

image2.png
816

A student alters the quicksort routine in Figure 8.22 by making the
following changes to lines 35 to 40. Is the result equivalent to the
original routine?

% for(i=Tow+1,j=high-2 ;)

% {

a7 while(a[i] < pivot)
8 i+

29 while(pivot <a[j 1)

0 =i

image3.png
An inversion is a pair of elements that are out of order in an array. In other
words, it is any ordered pair (i, j) having the property that i < jbut 4;> 4, . For
example, the sequence {8, 5,9, 2, 6, 3} has 10 inversions that correspond to
the pairs (8, 5), (8, 2), (8, 6), (8, 3). (5, 2), (5, 3), (9, 2), (9, 6), (9, 3), and
(6, 3). Note that the number of inversions equals the total number of times
that line 13 in Figure 8.2 is executed. This condition is always true because

image4.png
ad
* Quicksort algorithm (driver)
2.

public static <AnyType extends Comparable<? super AnyType>>
\{roid quicksort(AnyType [] a)

quicksort(a, 0, a.length - 1);

Jae
* Internal quicksort method that makes recursive calls.

* Uses median-of-three partitioning and a cutoff.

=

private static <AnyType extends Comparable<? super AnyType>>
void quicksort(AnyType [] a, int low, int high)

F(Tow + CUTOFF > high)
insertionsort(a, Tow, high);
else
{ _ //Sort Tow, niddle, high
int middle = (Tow + high) / 2;
$£(al middle].compareTo(al Tow 1) < 0)
swapReferences(a, low, middle);
$£(al high 1.conpareTo(al Tow]) <0)
swapReferences(a, low, high)
$£(al high J.conpareTo(a[middle]) <0)
swapReferences(a, niddle, high)}

// Place pivot at position high - 1
swapReferences(a, middle, high - 1);
AnyType pivot = a[high - 1 1;

// Begin partitioning
s 1

figure 822

Quicksort with

median-of-three

parttoning and cuoft
r small arrays

image5.png
for(i
! while(a[++i].compareTo(pivot) <0)
vhﬂi(pivot.compareTo(a[--j]) <0)
if(I' >=3)
break;

swapReferences(a, i, j);

}
// Restore pivot
swapReferences(a, 1, high - 1);

quicksort(a, low, i - 1); // Sort small elements
quicksort(a, i + 1, high); // Sort large elements

