CSSE 230 WA7 Weiss problems
[image:]
[image:]
[image:][image:][image:]

[image:]

[image:]
[image:]
[image:]
[image:]
[image:]
[bookmark: _GoBack][image:]
image6.png
21.3 Show the result of inserting 10, 12,1, 14,6,5,8,15,3,9,7,4, 11, 13, and
2, one at a time, in an initially empty heap. Then show the result of using
the linear-time buildHeap algorithm instead.

image7.png
The bui1dHeap oper-
ation can be done

21.2 the buildHeap operation:
inear-time heap construction

The buildHeap operation takes a complete tree that does not have heap order
and reinstates it. We want it to be a linear-time operation, since N insertions
could be done in O(N log N) time. We expect that O(N) is attainable because
N successive insertions take a total of O(N) time on average, based on the
result stated at the end of Section 21. The N successive insertions do more
work than we require because they maintain heap order after every insertion
and we need heap order only at one instant.

The easiest abstract solution is obtained by viewing the heap as a recur-
sively defined structure, as shown in Figure 21.15: We recursively call
buildHeap on the left and right subheaps. At that point, we are guaranteed that
heap order has been established everywhere except at the root. We can
establish heap order everywhere by calling percolateDown for the root. The
recursive routine works by guaranteeing that when we apply percolateDown(i),
all descendants of i have been processed recursively by their own calls to
percolateDown. The recursion, however, is not necessary, for the following

image8.png
reason. If we call percolateDown on nodes in reverse level order, then at the
point percolateDown(i) is processed, all descendants of node i will have been
processed by a prior call to percoateDoun. This process leads to an incredibly
simple algorithm for buildHeap, which is shown in Figure 21.16. Note that
percolateDown need not be performed on a leaf. Thus we start at the highest
numbered nonleaf node.

‘The tree in Figure 21.17(a) is the unordered tree. The seven remaining
trees in Figures 21.17(b) through 21.20 show the result of each of the seven
percolateDown operations. Each dashed line corresponds to two compariso
one to find the smaller child and one to compare the smaller child with
the node. Notice that the ten dashed lines in the algorithm correspond to
20 comparisons. (There could have been an eleventh line.)

Jox

+ Establish heap order property from an arbitrary
* arrangenent of itens. Runs in Tinear time.

i

private void buildHeap()

for(int i = currentSize / 2; i > 0;
percolatedonn(1);

figure 21.15

Recursive view of
heap

figure 21.16

Implementation of
finear-time bu Iche
method

figure 21.17

oy

percolatebown(7)

image9.png
figure 21.18

() After
percolatebown(6);
(b) after
percolatebown(s)

figure 21.19

() After
percolateboun(4);
(b) after
percolatebown(3)

figure 21.20

(@) After
percolatebown(2);
(b) after
percolatebown(1)
and bufldheap
terminates

@

@ 2)
@ & ®
@o@@@@

)

The inear-time ‘To bound the running time of buildHeap, we must bound the number of
b:wd 2 e . dashed lines. We can do so by computing the sum of the heights of all the
othesumofthe nodes in the heap, which is the maximum number of dashed lines. We
heights ofall he expect a small number because half the nodes are leaves and have height O
nodesintheheap a5 g quarter of the nodes have height 1. Thus only a quarter of the nodes

(those not already counted in the first two cases) can contribute more than

1 unit of height. In particular, only one node contributes the maximum

height of Llog N .

image10.png
810 Using Stirling’s formula, N! > (N/e)¥/ZrN, derive an estimate for
log (V).

image11.png
218 A complete binary tree of N elements uses array positions 1 through N.
Determine how large the array must be for

A binary tree that has two extra levels (i.e.,is slightly unbalanced)

A binary tree that has a deepest node at depth 2 log N'

A binary tree that has a deepest node at depth 4.1 log N

‘The worst-case binary tree

soge

image12.png
ATslc ol elFlalal 7]

1

2345678 091M0M11218

0

image1.png
205 Given the input {4371, 1323, 6173, 4199, 4344, 9679, 1989}, a fixed
table size of 10, and a hash function H(X) = X mod 10, show the
resulting
a. Linear probing hash table
b. Quadratic probing hash table
c. Separate chaining hash table

image2.png
20.3 linear probing

Now that we have a hash function, we need to decide what to do when a colli-
sion oceurs. Specifically, if X hashes outto a position that s already occupied,
where do we place it? The simplest possible strategy is linear probing, or
searching sequentially in the array until we find an empty cell. The search
wraps around from the last position to the first, if necessary. Figure 20.5
shows the result of inserting the keys 89, 18, 49, 58, and 9 in a hash table
when linear probing is used. We assume a hash function that returns the key X
mod the size of the table. Figure 20.5 includes the result of the hash function.

‘The first collision occurs when 49 is inserted; the 49 is put in the next
available spot—namely, spot 0, which is open. Then 58 collides with 18, 89,
and 49 before an empty spot is found three slots away in position 1. The col-
lision for element 9 is resolved similarly. So long as the table is large
enough, a free cell can always be found. However, the time needed to find a
free cell can get to be quite long. For example, if there is only one free cell
left in the table, we may have to search the entire table o find it. On average
we would expect to have to search half the table to find it, which is far from
the constant time per access that we are hoping for. But, if the table is kept
relatively empty, insertions should not be so costly. We discuss this
approach shortly.

hash (89, 10) = 9
hash (18, 10) = 8
hash (49, 18) = 9
hash (58, 10) = 8
hash (9, 10) =9
Aftorinsort 89 Aforinsart 18 Aftr insert 40 Aforinsert 88 Aferirsart 9
o 49 49 49
1 58 8

9

18 18 18 18

89 89 8 89 8

In finear probing,
colisions are
resolved by
sequentialy scan-
ning an array (with
wraparound) until
an empty cellis
found.

figure 20.5

Linear probing hash
table after each
insertion

image3.png
Quadratic probing
examines cels 1,4,
9,and 50 on, away
from the original
probe point.

Remember that
subsequent probe
points are a qua-
dratic number of
positions from the
original probe point

20.4 quadratic probing

Quadratic probing is a collision resolution method that eliminates the pri-
mary clustering problem of linear probing by examining certain cells away
from the original probe point. Its name is derived from the use of the for-
mula F(i) = i2 to resolve collisions. Specifically, if the hash function eval-
uates to H and a search in cell H is inconclusive, we try cells H+ 12,
H+22, H+3%, ..., H+i® (employing wraparound) in sequence. This
strategy differs from the linear probing strategy of searching H+1, H+2,
H+3, .., H+i.

Figure 20.7 shows the table that results when quadratic probing is used
instead of linear probing for the insertion sequence shown in Figure 20.5.
When 49 collides with 89, the first alternative attempted is one cell away.
This cell is empty, so 49 is placed there. Next, 58 collides at position 8. The
cell at position 9 (which is one away) is tried, but another collision occurs.
A vacant cell is found at the next cell tried, which is 22 = 4 positions
away from the original hash position. Thus 58 is placed in cell 2. The same
thing happens for 9. Note that the alternative locations for items that hash
to position 8 and the alternative locations for the items that hash to posi-
tion 9 are not the same. The long probe sequence to insert 58 did not affect
the subsequent insertion of 9, which contrasts with what happened with
linear probing.

image4.png
figure 20.7

hash (89, 7
sl e
hash (58, etie et
hash (9, chosen
Aftorinsert 89 After insert 18 Afterinsert49 Aferinsert 53 Aterinsert9 m:\z#&';m ~

0 49 49 49

1

2 58 58

3 9

4

5

6

7

8 18 18 18 18

9 89 89 89 89 89

image5.png
20.5 separate chaining hashing

A popular and space-efficient alternative to quadratic probing is separate chain-
ing hashing in which an array of linked lists is maintained. For an array of
linked lists, Lg, Ly, ..., Lys_ 1, the hash function tells us in which list to insert an
item X and then, during a find, which list contains X. The idea is that, although
searching a linked list is a linear operation, if the lists are sufficiently short, the
search time will be very fast. In particular, suppose that the load factor, N/M, is
., which is not bounded by 1.0. Thus the average list has length 2, making the
expected number of probes for an insertion or unsuccessful search A and the
expected number of probes for a successful search 1 +A/2. The reason is that
a successful search must occur in a nonempty list, and in such a list we expect to
have to traverse halfway down the list. The relative cost of a successful search

