CSSE 230 Day 24
 Sorting Overview

Agenda

- Student questions
- Exam preview
- Master Theorem examples
- Sorting grand tour
, Quicksort
- Scrabble work time

Exam 2 Tuesday at 7 PM (O267-269)

- Format same as Exam 1

One 8.5×11 sheet of paper (2 -sided) for written part
Same resources as before for programming part

- Topics: weeks 1-8 (no Scrabble).

Reading, programs, in-class, written assignments.
Especially

- OO programming, using various data structures (lists, stacks, queues, sets, maps, priority queues)
- Binary trees, including AVL, rank, and threaded trees
- Traversals and iterators, numeric properties
- Graphs
- PQs, Heaps and heapsort, other sorting methods.
- Issues in Hash table implementation
- Exhaustive search and the Queens problem
- File compression and Huffman trees
- Mathematical induction
- Simple recurrence relations

The Master Theorem works for divide-and-conquer
Q1-3 recurrence relations ... and works well!

- For any recurrence relation of the form:

$$
T(N)=a T\left(\frac{N}{b}\right)+f(N)
$$

with $a \geq 1, b>1$, and $f(N)=O\left(N^{k}\right)$

- The solution is:

$$
T(N)= \begin{cases}O\left(N^{\log _{b} a}\right) & \text { if } a>b^{k} \\ O\left(N^{k} \log N\right) & \text { if } a=b^{k} \\ O\left(N^{k}\right) & \text { if } a<b^{k}\end{cases}
$$

Elementary Sorting Methods

- Name as many as you can
- How does each work?
, Running time for each (sorting N items)?
- best
- worst
- average
- extra space requirements
- Spend 10 minutes with a group of three, answering these questions. Then we will summarize

QuickSort (a.k.a. "partition-exchange sort")

- Invented by C.A.R. Hoare in 1961
- Very widely used
- Somewhat complex, but fairly easy to understand

Partition: split the array into 2 parts: smaller than pivot and greater than pivot

Quicksort then recursively calls itself on the Q4 partitions

Partition: efficiently move small elements to the Q5 left of the pivot and greater ones to the right
// Assume min and max indices are low and high pivot = a[low]
i = low+1, j = high
while (true) \{
while (a[i] < pivot) i++
while (a[j] > pivot) j--
if (i >= j) break
swap(a, i, j)
\}
swap(a, low, j) // moves the pivot to the // correct place

QuickSort Average Case

- Running time for partition of N elements is $\Theta(\mathrm{N})$
, Quicksort Running time:
- call partition. Get two subarrays of sizes N_{L} and N_{R} (what is the relationship between N_{L}, N_{R}, and N ?)
Then Quicksort the smaller parts
$T(N)=N+T\left(N_{L}\right)+T\left(N_{R}\right)$
- Quicksort Best case: write and solve the recurrence
, Quicksort Worst case: write and solve the recurrence
- average: a little bit trickier
- We have to be careful how we measure

Average time for Quicksort

- Let $T(N)$ be the average \# of comparisons of array elements needed to quicksort N elements.
- What is $\mathrm{T}(0)$? $\mathrm{T}(1)$?
- Otherwise $\mathrm{T}(\mathrm{N})$ is the sum of
- time for partition
- average time to quicksort left part: $\mathrm{T}\left(\mathrm{N}_{\mathrm{L}}\right)$
- average time to quicksort right part: $\mathrm{T}\left(\mathrm{N}_{\mathrm{R}}\right)$
- $T(N)=N+T\left(N_{L}\right)+T\left(N_{R}\right)$

We need to figure out for each case, and average all of the cases

- Weiss shows how not to count it:
- What if we picked as the partitioning element the smallest element half of the time and the largest half of the time?
- Then on the average, $\mathrm{N}_{\mathrm{L}}=\mathrm{N} / 2$ and $\mathrm{N}_{\mathrm{R}}=\mathrm{N} / 2$,
but that doesn't give a true picture of this worst-case scenario.
In every case, either $\mathrm{N}_{\mathrm{L}}=\mathrm{N}-1$ or $\mathrm{N}_{\mathrm{R}}=\mathrm{N}-1$

We assume that all positions for the pivot are Q8a equally likely

- We always need to make some kind of "distribution" assumptions when we figure out Average case
, When we execute

```
        k = partition(pivot, i, j),
``` all positions i..j are equally likely places for the pivot to end up
- Thus \(\mathrm{N}_{\mathrm{L}}\) is equally likely to have each of the values \(0,1,2, \ldots N-1\)
- \(N_{L}+N_{R}=N-1\); thus \(N_{R}\) is also equally likely to have each of the values \(0,1,2, \ldots N-1\)
Thus \(T\left(N_{L}\right)=T\left(N_{R}\right)=\)

\section*{Continue the calculation}
- \(\mathrm{T}(\mathrm{N})=\)
- Multiply both sides by N
- Rewrite, substituting N-1 for N
- Subtract the equations and forget the insignificant (in terms of big-oh) -1:
- \(\mathrm{NT}(\mathrm{N})=(\mathrm{N}+1) \mathrm{T}(\mathrm{N}-1)+2 \mathrm{~N}\)
- Can we rearrange so that we can telescope?

\section*{Q11-15}

Continue continuing the calculation
- \(\mathrm{NT}(\mathrm{N})=(\mathrm{N}+1) \mathrm{T}(\mathrm{N}-1)+2 \mathrm{~N}\)
- Divide both sides by \(\mathrm{N}(\mathrm{N}+1)\)
, Write formulas for \(\mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{N}-1), \mathrm{T}(\mathrm{N}-2)\)...T(2).
- Add the terms and rearrange.
- Notice the familiar series
- Multiply both sides by N+1.

\section*{Improvements to QuickSort}
- Avoid the worst case
- Select pivot from the middle
- Randomly select pivot
- Median of 3 pivot selection.
- Median of k pivot selection
- "Switch over" to a simpler sorting method (insertion) when the subarray size gets small.

\section*{Other Sorting Demos}

\author{
- http://maven.smith.edu/~thiebaut/java/sort/ demo.html \\ - http://www.cs.ubc.ca/~harrison/Java/sorting -demo.html
}```

