
5/3/2012

1

Sorting Overview

� Student questions

� Exam preview

� Master Theorem examples

� Sorting grand tour

� Quicksort

� Scrabble work time

5/3/2012

2

� Format same as Exam 1
◦ One 8.5x11 sheet of paper (2-sided) for written part
◦ Same resources as before for programming part

� Topics: weeks 1-8 (no Scrabble).
◦ Reading, programs, in-class, written assignments.
◦ Especially

� OO programming, using various data structures
(lists, stacks, queues, sets, maps, priority queues)

� Binary trees, including AVL, rank, and threaded trees

� Traversals and iterators, numeric properties

� Graphs

� PQs, Heaps and heapsort, other sorting methods.

� Issues in Hash table implementation

� Exhaustive search and the Queens problem

� File compression and Huffman trees

� Mathematical induction

� Simple recurrence relations

� For any recurrence relation of the form:

with

� The solution is:

Theorem 7.5 in Weiss

Q1Q1Q1Q1----3333

5/3/2012

3

� Name as many as you can

� How does each work?

� Running time for each (sorting N items)?
◦ best

◦ worst

◦ average

◦ extra space requirements

� Spend 10 minutes with a group of three, answering
these questions. Then we will summarize

� Invented by C.A.R. Hoare in 1961

� Very widely used

� Somewhat complex, but fairly easy to
understand

5/3/2012

4

Q4

5/3/2012

5

// Assume min and max indices are low and high

pivot = a[low]

i = low+1, j = high

while (true) {

while (a[i] < pivot) i++

while (a[j] > pivot) j--

if (i >= j) break

swap(a, i, j)

}

swap(a, low, j) // moves the pivot to the

// correct place

Q5Q5Q5Q5

� Running time for partitionpartitionpartitionpartition of N of N of N of N elementselementselementselements is Θ(N)
� Quicksort Running time:
◦ call partition. Get two subarrays of sizes NL and NR

(what is the relationship between NL, NR, and N?)
◦ Then Quicksort the smaller parts
◦ T(N) = N + T(NL) + T(NR)

� Quicksort Best case: write and solve the recurrence

� Quicksort Worst case: write and solve the
recurrence

� average: a little bit trickier
◦ We have to be careful how we measure

Q6Q6Q6Q6----7777

5/3/2012

6

� Let T(N) be the average # of comparisons of
array elements needed to quicksort N
elements.

� What is T(0)? T(1)?

� Otherwise T(N) is the sum of

◦ time for partition

◦ average time to quicksort left part: T(NL)

◦ average time to quicksort right part: T(NR)

� T(N) = N + T(NL) + T(NR)

� Weiss shows how not not not not to count it:

� What if we picked as the partitioning element the
smallest element half of the time and the largest
half of the time?

� Then on the average, NL = N/2 and NR =N/2,

◦ but that doesn’t give a true picture of this worst-case
scenario.

◦ In every case, either NL = N-1 or NR =N-1

5/3/2012

7

� We always need to make some kind of
“distribution” assumptions when we figure out
Average case

� When we execute
k = partition(pivot, i, j),

all positions i..j are equally likely places for the
pivot to end up

� Thus NL is equally likely to have each of the
values 0, 1, 2, … N-1

� NL+NR = N-1; thus NR is also equally likely to have
each of the values 0, 1, 2, … N-1

� Thus T(NL)= T(NR) =

Q8aQ8aQ8aQ8a

� T(N) =

� Multiply both sides by N

� Rewrite, substituting N-1 for N

� Subtract the equations and forget the insignificant
(in terms of big-oh) -1:
◦ NT(N) = (N+1)T(N-1) + 2N

� Can we rearrange so that we can telescope?

Q9Q9Q9Q9----10101010

5/3/2012

8

� NT(N) = (N+1)T(N-1) + 2N

� Divide both sides by N(N+1)

� Write formulas for T(N), T(N-1),T(N-2) …T(2).

� Add the terms and rearrange.

� Notice the familiar series

� Multiply both sides by N+1.

Q11Q11Q11Q11----15151515

� Avoid the worst case
◦ Select pivot from the middle

◦ Randomly select pivot

◦ Median of 3 pivot selection.

◦ Median of k pivot selection

� "Switch over" to a simpler sorting method
(insertion) when the subarray size gets small.

5/3/2012

9

� http://maven.smith.edu/~thiebaut/java/sort/
demo.html

� http://www.cs.ubc.ca/~harrison/Java/sorting
-demo.html

