CSSE 230 Day 20

Recurrence Relations

Reminders/Announcements

- Don't forget the Scrabble team member preference survey on ANGEL. Due Wednesday at 5:00 PM.
- Thursday's class time: Work on EditorTrees with your team. Get help from assistants as needed. - Missing lecture time is one thing ...
- Additional help: Will Anderson will be available Thursday in class, hours 2 and 3.
- Thursday and Friday hours 9-10 in F-217

Evening lab hours this week (F-217, 7-9 PM) Tuesday, Thursday, Sunday Brian Lackey Wednesday: Doug Mann

- Today's Agenda:
- MCSS revisited (recursive version)
- Analyzing recursive (and other) algorithms by using recurrence relations

Introduction to Recurrence Relations

》) A technique for analyzing recursive algorithms

Recap: Maximum Contiguous

Subsequence Sum problem
Problem definition: Given a non-empty sequence of n (possibly negative) integers $A_{1}, A_{2}, \ldots, A_{n}$, find the maximum consecutive subsequence $S_{i, j}=\sum_{k=i}^{j} A_{k}$, and the corresponding values of i and j.

Divide and Conquer Approach

- Split the sequence in half
- Where can the maximum subsequence appear?
- Three possibilities :
- entirely in the first half, entirely in the second half, or begins in the first half and ends in the second half

Overview of algorithm

1. Using recursion, find the maximum sum of first half of sequence
2. Using recursion, find the maximum sum of second half of sequence
3. Compute the max of all sums that begin in the first half and end in the second half
(Use a couple of loops for this)
4. Choose the largest of these three numbers
```
private static int maxSumRec( int [ ] a, int left, int right )
{
        int maxLeftBorderSum = 0, maxRightBordersum = 0;
        int leftBordersum = 0, rightBordersum = 0;
        int center = ( left + right ) / 2;
        if( left == right) // Base case
        return a[ left ] > 0 ? a[ left ] : 0;
        int maxLeftSum = maxSumRec( a, left, center );
        int maxRightSum = maxSumRec( a, center + 1, right );
        for( int i = center; i >= left; i-- )
        leftBorderSum += a[ i ];
        if( leftBordersum > maxLeftBorderSum )
            maxLeftBorderSum = leftBorderSum;
        }
        for( int i = center + 1; i <= right; i++ )
    for
        rightBorderSum += a[ i ];
        if( rightBorderSum > maxRightBorderSum )
            maxRightBorderSum = rightBorderSum;
        }
        return max3( maxLeftSum, maxRightSum,
                        maxLeftBorderSum + maxRightBorderSum );
```

So, what's the run-time?

Analysis?

- Use a Recurrence Relation
- A function of N, typically written $\mathrm{T}(\mathrm{N})$
- Gives the run-time as a function of N
- Two (or more) part definition:
- Base case,
like $T(1)=c$
- Recursive case, like $\mathrm{T}(\mathrm{N})=\mathrm{T}(\mathrm{N} / 2)$

So, what's the recurrence relation for the recursive MCSS algorithm?

```
private static int maxSumRec( int [ ] a, int left, int right )
{
    int maxLeftBorderSum = 0, maxRightBordersum = 0;
    int leftBorderSum = 0, rightBorderSum = 0;
    int center = ( left + right ) / 2;
    if( left == right ) // Base case
        return a[ left ] > 0 ? a[ left ] : 0;
    int maxLeftSum = maxSumRec( a, left, center );
    int maxRightSum = maxSumRec( a, center + 1, right );
    for( int i = center; i >= left; i-- )
        leftBorderSum += a[ i ];
        if( leftBordersum > maxLeftBordersum )
            maxLeftBorderSum = leftBorderSum;
        }
    for( int i = center + 1; i <= right; i++ )
    rightBordersum += a[ i ];
    if( rightBorderSum > maxRightBorderSum )
        maxRightBorderSum = rightBorderSum;
        }
        return max3( maxLeftSum, maxRightSum,
                        maxLeftBorderSum + maxRightBorderSum );
```


Recurrence Relation, Formally

- An equation (or inequality) that relates the $\mathrm{n}^{\text {th }}$ element of a sequence to certain of its predecessors (recursive case)
- Includes an initial condition (base case)
- Solution: A function of n.
- Similar to differential equation, but discrete instead of continuous
- Some solution techniques are similar to diff. eq. solution techniques

Solve Simple Recurrence Relations

- One strategy: guess and check
- Examples:
- $\mathrm{T}(0)=0, \mathrm{~T}(\mathrm{~N})=2+\mathrm{T}(\mathrm{N}-1)$
- $\mathrm{T}(0)=1, \mathrm{~T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N}-1)$
- $\mathrm{T}(0)=\mathrm{T}(1)=1, \mathrm{~T}(\mathrm{~N})=\mathrm{T}(\mathrm{N}-2)+\mathrm{T}(\mathrm{N}-1)$
$\mathrm{T}(0)=1, \mathrm{~T}(\mathrm{~N})=\mathrm{N} \mathrm{T}(\mathrm{N}-1)$
- $\mathrm{T}(0)=0, \mathrm{~T}(\mathrm{~N})=\mathrm{T}(\mathrm{N}-1)+\mathrm{N}$
- $\mathrm{T}(1)=1, \mathrm{~T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{N}$
(just consider the cases where $\mathrm{N}=2^{\mathrm{k}}$)

Another Strategy

- Substitution
- $\mathrm{T}(1)=1, \mathrm{~T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{N}$
(just consider $\mathrm{N}=2^{\mathrm{k}}$)
- Suppose we substitute $\mathrm{N} / 2$ for N in the recursive equation?
- We can plug the result into the original equation!

Solution Strategies for Recurrence Relations

- Guess and check
- Substitution
- Telescoping and iteration
- The "master" method

Selection Sort

```
public static void selectionSort(int[] a) {
    //Sorts a non-empty array of integers.
    for (int last = a.length-1; last > 0; last--) {
            // find largest, and exchange with last
            int largest = a[0];
            int largePosition = 0;
            for (int j=1; j<=last; j++)
            if (largest < a[j]) {
                largest = a[j];
                largePosition = j;
            }
            a[largePosition] = a[last];
            a[last] = largest;

\section*{Another Strategy: Telescoping}
- Basic idea: tweak the relation somehow so successive terms cancel
- Example: \(\mathrm{T}(1)=1, \mathrm{~T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{N}\) where \(N=2^{k}\) for some \(k\)
- Divide by N to get a "piece of the telescope":
\[
\begin{aligned}
T(N) & =2 T\left(\frac{N}{2}\right)+N \\
\Longrightarrow \frac{T(N)}{N} & =\frac{2 T\left(\frac{N}{2}\right)}{N}+1 \\
\Longrightarrow \frac{T(N)}{N} & =\frac{T\left(\frac{N}{2}\right)}{\frac{N}{2}}+1
\end{aligned}
\]


\section*{A Fourth Strategy: Master Theorem}
- For Divide-and-conquer algorithms
- Divide data into two or more parts
- Solve problem on one or more of those parts
- Combine "parts" solutions to solve whole problem
- Examples
- Binary search

Merge Sort
MCSS recursive algorithm we studied last time

\section*{Divide and Conquer Recurrence}
\[
\begin{array}{r}
T(N)=a T\left(\frac{N}{b}\right)+f(N) \\
a \geq 1, b>1, \text { and } f(N)=O\left(N^{k}\right)
\end{array}
\]
- \(b=\) number of parts we divide into
- \(a=n u m b e r ~ o f ~ p a r t s ~ w e ~ s o l v e ~\)
- \(f(N)=\) overhead of dividing and combining
- Merge sort: \(\quad b=\ldots, a=\ldots, k=\)
- Binary Search: \(\mathrm{b}=\ldots, \mathrm{a}=\ldots, \mathrm{k}=\)

\section*{Master Theorem}
- For any recurrence relation:
\[
T(N)=a T\left(\frac{N}{b}\right)+f(N)
\]
with \(a \geq 1, b>1\), and \(f(N)=O\left(N^{k}\right)\)
- The solution is:
\[
T(N)= \begin{cases}O\left(N^{\log _{b} a}\right) & \text { if } a>b^{k} \\ O\left(N^{k} \log N\right) & \text { if } a=b^{k} \\ O\left(N^{k}\right) & \text { if } a<b^{k}\end{cases}
\]

\section*{Summary: Recurrence Relations}
- Analyze code to determine relation
- Base case in code gives base case for relation
- Number and "size" of recursive calls determine recursive part of recursive case
- Non-recursive code determines rest of recursive case
- Apply one of four strategies
-Guess and check
- Substitution (a.k.a. iteration)
- Telescoping
- Master theorem```

