
4/24/2012

1

Recurrence Relations

� Don't forget the Scrabble team member preference
survey on ANGEL. Due Wednesday at 5:00 PM.

� Thursday's class time: Thursday's class time: Thursday's class time: Thursday's class time: Work on EditorTrees with your
team. Get help from assistants as needed.
◦ Missing lecture time is one thing …

� Additional help: Will Anderson will be available
◦ Thursday in class, hours 2 and 3.
◦ Thursday and Friday hours 9-10 in F-217

Evening lab hours this week (F-217, 7-9 PM)
Tuesday, Thursday, Sunday Brian Lackey
Wednesday: Doug Mann

� Today's Agenda:
◦ MCSS revisited (recursive version)
◦ Analyzing recursive (and other) algorithms by using
recurrence recurrence recurrence recurrence relationsrelationsrelationsrelations

� Your Questions (and my answers!)Your Questions (and my answers!)Your Questions (and my answers!)Your Questions (and my answers!)

4/24/2012

2

A technique for analyzing
recursive algorithms

4/24/2012

3

� Split the sequence in half

� Where can the maximum subsequence appear?

� Three possibilities :
◦ entirely in the first half,

◦ entirely in the second half, or

◦ beginsbeginsbeginsbegins in the first half and endsendsendsends in the second half

1111

1. Using recursion, find the maximum sum of
firstfirstfirstfirst half of sequence

2. Using recursion, find the maximum sum of
secondsecondsecondsecond half of sequence

3. Compute the max of all sums that begin in
the first half and end in the second half
◦ (Use a couple of loops for this)

4. Choose the largest of these three numbers

4/24/2012

4

So, what’s the
run-time?

2222----3333

� Use a Recurrence RelationRecurrence RelationRecurrence RelationRecurrence Relation
◦ A function of N, typically
written T(N)

◦ Gives the run-time as a
function of N

◦ Two (or more) part definition:

� Base case,
like T(1) = c

� Recursive case,
like T(N) = T(N/2)

So, what’s the recurrence relation
for the recursive MCSS algorithm?

4444

4/24/2012

5

What’s N in the
base case?

5555----6666

� An equation (or inequality) that relates the
nth element of a sequence to certain of its
predecessors (recursive case)

� Includes an initial condition (base case)
� Solution: Solution: Solution: Solution: A function of n.

� Similar to differential equation, but discrete
instead of continuous

� Some solution techniques are similar to
diff. eq. solution techniques

4/24/2012

6

� One strategy: guess and checkguess and checkguess and checkguess and check

� Examples:
◦ T(0) = 0, T(N) = 2 + T(N-1)

◦ T(0) = 1, T(N) = 2 T(N-1)

◦ T(0) = T(1) = 1, T(N) = T(N-2) + T(N-1)

◦ T(0) = 1, T(N) = N T(N-1)

◦ T(0) = 0, T(N) = T(N -1) + N

◦ T(1) = 1, T(N) = 2 T(N/2) + N
(just consider the cases where N=2k)

7777----10101010

� SubstitutionSubstitutionSubstitutionSubstitution
� T(1) = 1, T(N) = 2 T(N/2) + N

(just consider N=2k)

� Suppose we substitute N/2 for N in the
recursive equation?
◦ We can plug the result into the original equation!

11110000

4/24/2012

7

� Guess and check

� Substitution

� Telescoping and iteration

� The “master” method

11111111

What’s N?

12121212----13131313

4/24/2012

8

� Basic idea: tweak the relation somehow so
successive terms cancel

� Example: T(1) = 1, T(N) = 2T(N/2) + N
where N = 2k for some k

� Divide by N to get a “piece of the telescope”:

14141414

� For Divide-and-conquer algorithms
◦ Divide data into two or more parts

◦ Solve problem on one or more of those parts

◦ Combine "parts" solutions to solve whole problem

� Examples
◦ Binary search

◦ Merge Sort

◦ MCSS recursive algorithm we studied last time

Theorem 7.5 in WeissTheorem 7.5 in WeissTheorem 7.5 in WeissTheorem 7.5 in Weiss

15a15a15a15a

4/24/2012

9

� b = number of parts we divide into

� a = number of parts we solve

� f(N) = overhead of dividing and combining

� Merge sort: b = , a = , k =

� Binary Search: b = , a = , k =

15b15b15b15b

� For any recurrence relation:

with

� The solution is:

Theorem 7.5 in Weiss

16161616

4/24/2012

10

� Analyze code to determine relation
◦ Base case in code gives base case for relation

◦ Number and “size” of recursive calls determine
recursive part of recursive case

◦ Non-recursive code determines rest of recursive
case

� Apply one of four strategies
◦ Guess and check

◦ Substitution (a.k.a. iteration)

◦ Telescoping

◦ Master theorem

