CSSE 230 Day 19

Tree Variations: EBTs \& Tries

Reminders/Announcements

- Use the new Eclipse project for EditorTrees Milestone 2.
- Milestone 2 grading: You must pass all Milestone 1 tests in order to get any credit for Milestone 2.
- Exam 2: Tuesday May 8, 7:00 PM
- Final Exam: Tuesday May 22: 8:00 AM
- Scrabble project team preference survey: by Wednesday 5 PM
- Consider applying to be a CSSE TA for the Fall term (look for an email in the next week or two)
- In the fall, we mainly hire work-study or work-opportunity students.
, Reminder: EditorTrees Milestone 2 is much more complex than Milestone 1.
- If your team is not yet debugging "delete", you probably need to pick up the pace a bit.

What questions do you have?

Editor Trees Anything else

Agenda

- Extended Binary Trees (EBT), including a proof by induction.
- Digital search trees (tries)
- Directed Acyclic Graphs (DAG)
- EditorTrees work time

Tree Variations

》) Extended Binary trees Digital Search Trees Directed Acyclic Graphs

Extended Binary Tree (EBT) is just a different 1-2 way to view binary trees: nul/ external nodes as leaves

- An Extended Binary Tree is either
- an external node, or

- an (internal) root node and two EBTs T_{L} and T_{R}.
- We draw internal nodes as circles and external nodes as squares
- Generic picture and detailed picture
- EBT: An alternative way of viewing binary trees, in which the external nodes represent different "places" where an unsuccessful search can end or an element can be inserted
- Internal nodes are used (later) in calculating average time for successful search
- External nodes in calculating average time for unsuccessful search.

A property of EBTs

- Property $\mathrm{P}(\mathrm{N})$: For any $\mathrm{N}>=0$, any EBT with N internal nodes has \qquad external nodes.
- Proof by strong induction, based on the recursive definition.
- A notation for this problem: $\operatorname{IN}(T), \mathrm{EN}(\mathrm{T})$
- Note that, like a lot of other simple examples, this one can be done without induction.
- But one purpose of this exercise is practice with strong induction, especially on binary trees.
- What is the crux of any induction proof?
- Finding a way to relate the properties for larger values (in this case larger trees) to the property for smaller values (smaller trees). Do the proof now.

Another approach to search trees

- Digital search tree (trie).
- We store the data digit-by-digit (or letter by letter).
- How to actually represent nodes?

We can collapse single-branch paths to save space

We can share a single static " ϵ-node" to save space

- The epsilon nodes aren't null; they just show the end of a word.
- There can still be null pointers at each level where there are missing letters

Representing a Trie as a binary tree saves even more space

For many more details on Tries, see http://en.wikipedia.org/wiki/Trie

You can trie to create an interesting trie using this applet

- http://blog.ivank.net/trie-in-as3.html

Expression Tree Variation

- Consider a tree that represents this expression: $\mathrm{a}+\mathrm{a}$ * $(\mathrm{b}-\mathrm{c})+(\mathrm{b}-\mathrm{c})^{*} \mathrm{~d}$
- Notice the common sub-expressions: a and (b-c)
- The value of each of those only needs to be computed once

Directed Acyclic Graph (DAG)

- A useful representation for common subexpressions: : $a+a$ * $(b-c)+(b-c) * d$
- A DAG is like a tree with sharing
- Directed graph
- No cycles
- A distinguished root

Looks like a tree when doing a - traversal, but saves space.

Editor Trees Work Time

 >>