
4/22/2012

1

Priority Queues
Heaps

Heapsort

� Student questions
◦ EditorTrees

◦ WA 6

◦ File Compression

◦ Graphs

◦ Hashing

◦ Anything else

� Agenda
◦ Priority Queues

◦ Heaps

◦ Heapsort

Written Assignments 7 and 8 Written Assignments 7 and 8 Written Assignments 7 and 8 Written Assignments 7 and 8
have been updated for this term. have been updated for this term. have been updated for this term. have been updated for this term.

Each of them is smaller than Each of them is smaller than Each of them is smaller than Each of them is smaller than
many of the written assignments many of the written assignments many of the written assignments many of the written assignments
have been. have been. have been. have been.

No programming No programming No programming No programming problems in problems in problems in problems in
either either either either assignment.assignment.assignment.assignment.

4/22/2012

2

Basic operations

Implementation options

� Each element in the PQ has an associated
prioritypriorityprioritypriority, which is a value from a comparable
type (in our examples, an integer).

� Operations (may have other names):
◦ findMin()

◦ insert(item, priority)

◦ deleteMin()

4/22/2012

3

� How could we implement it using data
structures that we already know about?
◦ Array?
◦ Queue?
◦ List?
◦ BinarySearchTree?

� One efficient approach uses a binary heap
◦ A somewhat-sorted complete binary tree

� Questions we'll ask:
◦ How can we efficiently represent a complete binary
tree?
◦ Can we add and remove items efficiently without
destroying the "heapness" of the structure?

Storage (an array)

Algorithms for insertion and
deleteMin

4/22/2012

4

Figure 21.1
A complete binary tree and its array representation

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Array: How to find the children

or the parent of a node?

Notice the

lack of

explicit

pointers in

the array

“complete”
is not a
completely
standard
term

One "wasted"
array position (0)

1111

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

A Binary (min) Heap is a

complete Binary Tree (using

the array implementation, as

on the previous slide) that

has the heap-order property

everywhere.

In a binary heap, where do we find
•The smallest element?
•2nd smallest?
•3rd smallest?

2222----3333

4/22/2012

5

Figure 21.7
Attempt to insert 14, creating the hole and bubbling the hole up

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Create a "hole" where 14 can be inserted.

Percolate up!

Recall that the
actual data
movement is
done by array
manipulation

Figure 21.8
The remaining two steps required to insert 14 in the original heap
shown in Figure 21.7

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Analysis of

insertion …

Your turn: Insert into an initially empty heap:
6 4 8 1 5 3 2 7

4/22/2012

6

4444----5555

Figure 21.10 Creation of the hole at the root

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

The min is at the root. Delete it, then use the percolateDown

algorithm to find the correct place for its replacement.

We must decide which child to promote, to make room for 31.

4/22/2012

7

Figure 21.11
The next two steps in the deleteMin operation

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 21.12
The last two steps in the deleteMin operation

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

4/22/2012

8

Compare node to its children,

moving root down and

promoting the smaller child until

proper place is found.

Analysis

6666----7777

� Worst case times:
◦ findMin: O(1)
◦ insert: O(log n)
◦ deleteMin O(log n)

� big-oh times for insert/delete are the same
as in the balanced BST implementation, but ..
◦ Heap operations are much simpler,
◦ A heap doesn’t require additional space for pointers
or balance codes.

8888

4/22/2012

9

Use a binary heap to sort an
array.

� Start with empty heap

� Insert each array element into heap
� Repeatedly do deleteMin, copying elements back
into array.

� http://nova.umuc.edu/~jarc/idsv/lesson3.html
◦ Can be run in demo mode or practice mode.

� We can save space by doing the whole sort in
place, using a "maxHeap" (i.e. a heap where the
maximum element is at the root instead of the
minimum)

� Analysis?
◦ Next slide …Next slide …Next slide …Next slide …

4/22/2012

10

� Add the elements to the heap
◦ Repeatedly call insert

� Remove the elements and place into the array
◦ Repeatedly call DeleteMin

� Use Stirling'sStirling'sStirling'sStirling's
approximationapproximationapproximationapproximation:

� Can we do
better for
the insertion
part?
◦ Yes, use BuildHeap (next)

10101010

http://en.wikipedia.org
/wiki/Stirling%27s_appr
oximation

BuildHeap takes a complete tree that is not a heap and

exhanges elements to get it into heap form

At each stage it takes a root plus two heaps and "percolates

down" the root to restore "heapness" to the entire subtree

Why this starting point?

4/22/2012

11

Figure 21.17 Implementation of the linear-time buildHeap method

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 21.18
(a) After percolateDown(6);
(b) after percolateDown(5)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

4/22/2012

12

Figure 21.19
(a) After percolateDown(4);
(b) after percolateDown(3)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 21.20
(a)After percolateDown(2);
(b) after percolateDown(1) and buildHeap terminates

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

4/22/2012

13

� Find a summation that represents the
maximum number of comparisons required
to rearrange an array into a heap

� Can you find a summation and its value?

� Find a summation that represents the
maximum number of comparisons required
to rearrange an array of N=2H+1-1 elements
into a heap

◦ The summation is

and the sum is N – H - 1

• Good practice: prove this formula by induction
• Can do it strictly by the numbers
• Simpler: Do it based on the trees.

4/22/2012

14

� Add the elements to the heap
◦ Use buildHeap

� Remove the elements and place into the array
◦ Repeatedly call deleteMin

9999----10101010

