

Today

- Student questions
- EditorTrees
- WA 6
- File Compression
- Graphs
- Hashing
- Anything else

Written Assignments 7 and 8 have been updated for this term.

Each of them is smaller than many of the written assignments have been.

No programming problems in either assignment.

- Agenda
- Priority Queues
- Heaps
- Heapsort

Priority Queue

》) Basic operations Implementation options

Priority Queue operations

- Each element in the PQ has an associated priority, which is a value from a comparable type (in our examples, an integer).
, Operations (may have other names):
- findMin()
- insert(item, priority)
- deleteMin()

Priority queue implementation

- How could we implement it using data structures that we already know about?
- Array?
- Queue?
- List?
- BinarySearchTree?
- One efficient approach uses a binary heap

A somewhat-sorted complete binary tree
, Questions we'll ask:
How can we efficiently represent a complete binary tree?

- Can we add and remove items efficiently without destroying the "heapness" of the structure?

Figure 21.1
A complete binary tree and its array representation
Notice the lack of explicit pointers in the array

One "wasted" array position (0) Data Structures \& Problem Solving using JAVA/2E \quad Mark Allen Weiss © 2002 Addison Wesley

The (min) heap-order property: every node's value is \leq its childrens' values

> A Binary (min) Heap is a complete Binary Tree (using the array implementation, as on the previous slide) that has the heap-order property everywhere.

In a binary heap, where do we find -The smallest element?
$\cdot 2^{\text {nd }}$ smallest?
-3 $3^{\text {rd }}$ smallest?

Figure 21.7
Attempt to insert 14, creating the hole and bubbling the hole up Insertion algorithm

Create a "hole" where 14 can be inserted. Percolate up!

Figure 21.8
The remaining two steps required to insert 14 in the original heap shown in Figure 21.7
Insertion Algorithm continued

Analysis of
(a) insertion ...

(b)

Your turn: Insert into an initially empty heap:
64815327

Code for Insertion

```
public PriorityQueue.Position insert( Comparable x )
{
    if( currentSize + 1 == array.length )
        doubleArray();
        // Percolate up
    int hole = ++currentSize;
    array[ 0 ] = x;
    for( ; x.compareTo( array[ hole / 2 ] ) < 0; hole /= 2 )
        array[ hole ] = array[ hole / 2 ];
    array[ hole ] = x;
    return null;
}
```


DeleteMin algorithm

The min is at the root. Delete it, then use the percolateDown algorithm to find the correct place for its replacement.

We must decide which child to promote, to make room for 31.
Figure 21.10 Creation of the hole at the root

[^0]Figure 21.11
The next two steps in the deleteMin operation

DeleteMin Slide 2

Figure 21.12
The last two steps in the deleteMin operation
DeleteMin Slide 3


```
public Comparable deleteMin() 6-7
{
    Comparable minItem = findMin();
    array[ 1 ] = array[ currentSize-- ];
    percolateDown( 1 );
    return minItem;
}
    Compare node to its children,
private void percolateDowm( int hole) moving root down and
    int child;
    Comparable tmp = array[ hole ];
                                    proper place is found.
    for( ; hole * 2 <= currentSize; hole = child)
    {
        child = hole * 2;
        if( child != currentSize &&
            array[ child + 1 ].compareTo( array[ child ] ) < 0 )
        child++;
        if( array[ child ].compareTo( tmp ) < 0 )
        array[ hole ] = array[ child ];
        else
            break;
    }
    array[ hole ] = tmp;
```

Summary: Implementing a Priority Queue as a binary heap

- Worst case times:
- findMin: O(1)
- insert: O(log n)
- deleteMin O(log n)
- big-oh times for insert/delete are the same as in the balanced BST implementation, but ..
- Heap operations are much simpler,

A heap doesn't require additional space for pointers or balance codes.

Heapsort

》) Use a binary heap to sort an array.

Using a Heap for sorting

- Start with empty heap
- Insert each array element into heap
- Repeatedly do deleteMin, copying elements back into array.
- http:// nova.umuc.edu/~jarc/idsv/lesson3.html
- Can be run in demo mode or practice mode.
- We can save space by doing the whole sort in place, using a "maxHeap" (i.e. a heap where the maximum element is at the root instead of the minimum)
- Analysis?
- Next slide ...

Analysis of simple heapsort

- Add the elements to the heap
- Repeatedly call insert
- Remove the elements and place into the array
- Repeatedly call DeleteMin
, Use Stirling's $\quad \ln n!=n \ln n-n+O(\ln (n))$ approximation:

```
http://en.wikipedia.org /wiki/Stirling\%27s_appr oximation
```

- Can we do better for the insertion part?
- Yes, use BuildHeap (next)

BuildHeap takes a complete tree that is not a heap and exhanges elements to get it into heap form

At each stage it takes a root plus two heaps and "percolates down" the root to restore "heapness" to the entire subtree
/**

* Establish heap order property from an arbitrary
* arrangement of items. Runs in linear time. */
private void buildHeap()
\{
for (int $i=$ currentSize $/ 2 ; i>0 ; i--$)
percolatedown(i);
\}
Why thîs starting point?
Figure 21.17 Implementation of the linear-time buildHeap method

(a)

(b)
private void buildHeap()
private void buildHeap()
\{
\{
for (int i = currentSize / 2; i > 0; i--)
for (int i = currentSize / 2; i > 0; i--)
percolateDown(i);
percolateDown(i);
)
)

Figure 21.18
(a) After percolateDown(6);
(b) after percolateDown(5)

(a)

(b)

Figure 21.19
(a) After percolateDown(4);
(b) after percolateDown(3)

(a)

(b)

Figure 21.20
(a)After percolateDown(2);
(b) after percolateDown(1) and buildHeap terminates

(a)

(b)

Analysis of BuildHeap

- Find a summation that represents the maximum number of comparisons required to rearrange an array into a heap
- Can you find a summation and its value?

Analysis of BuildHeap

- Find a summation that represents the maximum number of comparisons required to rearrange an array of $\mathrm{N}=2^{\mathrm{H}+1}$ - 1 elements into a heap

The summation is $\sum_{k=0}^{H} k 2^{H-k}$ and the sum is $\mathrm{N}-\mathrm{H}-1$

- Good practice: prove this formula by induction
- Can do it strictly by the numbers
- Simpler: Do it based on the trees.

Analysis of better heapsort

- Add the elements to the heap
- Use buildHeap
- Remove the elements and place into the array
- Repeatedly call deleteMin

[^0]: Data Structures \& Problem Solving using JAVA/2E Mark Allen Weiss ©2002 Addison Wesley

