
4/16/2012

1

Data Compression
Exhaustive search, backtracking, object-oriented Queens

Check out from SVN:Check out from SVN:Check out from SVN:Check out from SVN:
QueensQueensQueensQueens
HuffmanHuffmanHuffmanHuffman----BaileyBaileyBaileyBailey----JFCJFCJFCJFC

4/16/2012

2

� Teams for EditorTrees project

� Greedy Algorithms

� Data Compression

� Huffman's algorithm

� Exhaustive search, backtracking,
and object-oriented queens

Exam 2Exam 2Exam 2Exam 2
Tuesday, May 8: 7:00Tuesday, May 8: 7:00Tuesday, May 8: 7:00Tuesday, May 8: 7:00----9:00 PM9:00 PM9:00 PM9:00 PM

Brief description

Meet your team

4/16/2012

3

� In general, implementation of a Data
Structure is separate from application.

� Most CSSE 230 projects have used existing Most CSSE 230 projects have used existing Most CSSE 230 projects have used existing Most CSSE 230 projects have used existing
data structures to create an applicationdata structures to create an applicationdata structures to create an applicationdata structures to create an application

� In this project you will create an efficient data
structure that could be used for in a text
editor.

� But you will not create the GUI application But you will not create the GUI application But you will not create the GUI application But you will not create the GUI application
that uses it.that uses it.that uses it.that uses it.

� EditTree:EditTree:EditTree:EditTree: A height-balanced (but not AVL)
binary tree with rank. Insertion and deletion
are by position, not by natural ordering of the
inserted elements.

� Log N Operations includeLog N Operations includeLog N Operations includeLog N Operations include
◦ Insert, delete, find, concatenate, split, height, size

� Node fields include balance code and rank.Node fields include balance code and rank.Node fields include balance code and rank.Node fields include balance code and rank.

� csse230csse230csse230csse230----201230201230201230201230----ETETETET----11,amesen,elswicwj,piliseal11,amesen,elswicwj,piliseal11,amesen,elswicwj,piliseal11,amesen,elswicwj,piliseal

� csse230csse230csse230csse230----201230201230201230201230----ETETETET----12,eubankct,harbisjs,murphysw12,eubankct,harbisjs,murphysw12,eubankct,harbisjs,murphysw12,eubankct,harbisjs,murphysw

� csse230csse230csse230csse230----201230201230201230201230----ETETETET----13,goldthea,postcn,rujirasl13,goldthea,postcn,rujirasl13,goldthea,postcn,rujirasl13,goldthea,postcn,rujirasl

� csse230csse230csse230csse230----201230201230201230201230----ETETETET----14,paulbi,woolleld,newmansr14,paulbi,woolleld,newmansr14,paulbi,woolleld,newmansr14,paulbi,woolleld,newmansr

� csse230csse230csse230csse230----201230201230201230201230----ETETETET----15,huangz,namdw,koestedj15,huangz,namdw,koestedj15,huangz,namdw,koestedj15,huangz,namdw,koestedj

� csse230csse230csse230csse230----201230201230201230201230----ETETETET----16,maglioms,mehrinla,rudichza16,maglioms,mehrinla,rudichza16,maglioms,mehrinla,rudichza16,maglioms,mehrinla,rudichza

� csse230csse230csse230csse230----201230201230201230201230----ETETETET----17,mcdonabj,morrista,millerns17,mcdonabj,morrista,millerns17,mcdonabj,morrista,millerns17,mcdonabj,morrista,millerns

� csse230csse230csse230csse230----201230201230201230201230----ETETETET----18,nuanests,shahdk,timaeudg18,nuanests,shahdk,timaeudg18,nuanests,shahdk,timaeudg18,nuanests,shahdk,timaeudg

� csse230csse230csse230csse230----201230201230201230201230----ETETETET----19,sanderej,semmeln,weirjm19,sanderej,semmeln,weirjm19,sanderej,semmeln,weirjm19,sanderej,semmeln,weirjm

� csse230csse230csse230csse230----201230201230201230201230----ETETETET----20,mccullwc,yuhasmj20,mccullwc,yuhasmj20,mccullwc,yuhasmj20,mccullwc,yuhasmj

� csse230csse230csse230csse230----201230201230201230201230----ETETETET----21,bollivbd,davelldf,memeriaj21,bollivbd,davelldf,memeriaj21,bollivbd,davelldf,memeriaj21,bollivbd,davelldf,memeriaj

� csse230csse230csse230csse230----201230201230201230201230----ETETETET----22,faulknks,scroggd,spryct22,faulknks,scroggd,spryct22,faulknks,scroggd,spryct22,faulknks,scroggd,spryct

� csse230csse230csse230csse230----201230201230201230201230----ETETETET----23,fendrirj,hopwoocp,pohltm23,fendrirj,hopwoocp,pohltm23,fendrirj,hopwoocp,pohltm23,fendrirj,hopwoocp,pohltm

� csse230csse230csse230csse230----201230201230201230201230----ETETETET----24,haydr,lawrener,tilleraj24,haydr,lawrener,tilleraj24,haydr,lawrener,tilleraj24,haydr,lawrener,tilleraj

� csse230csse230csse230csse230----201230201230201230201230----ETETETET----25,roetkefj,stewarzt,uphusar25,roetkefj,stewarzt,uphusar25,roetkefj,stewarzt,uphusar25,roetkefj,stewarzt,uphusar

� csse230csse230csse230csse230----201230201230201230201230----ETETETET----26,gartzkds,minardar,ewertbe26,gartzkds,minardar,ewertbe26,gartzkds,minardar,ewertbe26,gartzkds,minardar,ewertbe

� csse230csse230csse230csse230----201230201230201230201230----ETETETET----27,iwemamj,modivr,qinz27,iwemamj,modivr,qinz27,iwemamj,modivr,qinz27,iwemamj,modivr,qinz

� csse230csse230csse230csse230----201230201230201230201230----ETETETET----28,zhangz,taylorem,watterlm28,zhangz,taylorem,watterlm28,zhangz,taylorem,watterlm28,zhangz,taylorem,watterlm

� csse230csse230csse230csse230----201230201230201230201230----ETETETET----29,lius,weil,yuhasem29,lius,weil,yuhasem29,lius,weil,yuhasem29,lius,weil,yuhasem

� csse230csse230csse230csse230----201230201230201230201230----ETETETET----30,meyermc30,meyermc30,meyermc30,meyermc

Meet your
partners to plan
when you will
meet to begin
work.

Suggestion: Suggestion: Suggestion: Suggestion:
Meet before
tomorrow to
discuss the
project
requirements.
Formulate a list
questions to ask
during
Tuesday's class.

Whether or not
you meet before
Tuesday, read
the EditorTrees
requirements
and come with
questions.

4/16/2012

4

� Whenever a choice is to be made, pick the
one that seems optimal for the moment,
without taking future choices into
consideration
◦ Once each choice is made, it is irrevocable

� For example, a greedy Scrabble player will
simply maximize her score for each turn,
never saving any “good” letters for possible
better plays later
◦ Doesn’t necessarily optimize score for entire Doesn’t necessarily optimize score for entire Doesn’t necessarily optimize score for entire Doesn’t necessarily optimize score for entire

gamegamegamegame

Q1Q1Q1Q1

� Take a piece or pawn whenever you will not
lose a piece or pawn (or will lose one of lesser
value) on the next turn

� Not a good strategy for this game either.

� But there are some problems for which
greedy algorithms produce optimal solutions.

4/16/2012

5

SPACE 17 A 4 U 2

O 12 S 4 W 2

Y 9 I 3 N 2

L 8 D 3 K 1

E 6 COMMA 2 T 1

H 5 B 2 APOSTROPHE 1

PERIOD 4 G 2

Letter frequencies

YOU SAY GOODBYE. I SAY HELLO. HELLO, HELLO. I DON'T KNOW WHY YOU SAY GOODBYE, I SAY HELLO.

•There are 90 characters altogether (20 different).

•How many total bits in the ASCII representation of this string?

•We can get by with fewer bits per character (custom code)

•How many bits per character? How many for entire message?

•Do we need to include anything else in the message?

•How to represent the table?

1. count

2. ASCII code for each character How to do better?

Q2Q2Q2Q2----3333

� Named for David HuffmanNamed for David HuffmanNamed for David HuffmanNamed for David Huffman
◦ http://en.wikipedia.org/wiki/David_A._Huffman
◦ Invented while he was a graduate student at MIT.
◦ Huffman never tried to patent an invention from his

work. Instead, he concentrated his efforts on
education.
◦ In Huffman's own words, "My products are my

students."

� Principles of variablePrinciples of variablePrinciples of variablePrinciples of variable----length character codes:length character codes:length character codes:length character codes:
◦ Less-frequent characters have longer codes
◦ No code can be a prefix of another code

� We build a tree (based on character
frequencies) that can be used to encode and
decode messages

Q4Q4Q4Q4----5555

4/16/2012

6

� RECAP: Principles for determining a scheme RECAP: Principles for determining a scheme RECAP: Principles for determining a scheme RECAP: Principles for determining a scheme
for creating character codes:for creating character codes:for creating character codes:for creating character codes:
1. Less-frequent characters have longer codes so

that more-frequent characters can have shorter
codes

2. No code can be a prefix of another code

� Why is this restriction necessary?

� Assume that we have some routines for
packing sequences of bits into bytes and
writing them to a file, and for unpacking
bytes into bits when reading the file
◦ Weiss has a very clever approach:

� BitOutputStreamBitOutputStreamBitOutputStreamBitOutputStream and BitInputStreamBitInputStreamBitInputStreamBitInputStream

� methods writeBit and readBit allow us to
logically read or write a bit at a time

Draw part

of the Tree

Decode a

"message"

4/16/2012

7

I 1

R 1

N 2

O 3

A 3

T 5

E 8

•Start with a separate tree for each

character (in a priority queue)

•Repeatedly merge the two lowest

(total) frequency trees and insert new

tree back into priority queue

•Use the Huffman tree to encode

NATION.

Huffman codes are provably optimal

among all single-character codes

Q6Q6Q6Q6----9999

� When we send a message, the code table can
basically be just the list of characters and
frequencies
◦ Why?

Q10Q10Q10Q10

4/16/2012

8

� This code provides human-readable output to help

us understand the Huffman algorithm.

� We will deal with it at the abstract level; "real" code

to do file compression is found in DS chapter 12.

� I am confident that you can figure out those other

details if you need them.

� This code is based on code written by Duane Bailey,

in his book JavaStructures.

� One great thing about this example is the

simultaneous use of several data structures (Binary

Tree, Hash Table, Priority Queue).

� Leaf: Leaf: Leaf: Leaf: Represents a leaf node in a Huffman tree.

◦ Contains the character and a count of how many times it

occurs in the text.

� HuffmanTreeHuffmanTreeHuffmanTreeHuffmanTree implements Comparable:implements Comparable:implements Comparable:implements Comparable:

Each node contains the total weight of all

characters in its subtree, and either

◦ a leaf node, or

◦ a binary node with two subtrees that are Huffman trees.

� The contents field of a non-leaf node is never

used; we only need the total weight.

� compareTo returns its result based on comparing

the total weights of the trees.

4/16/2012

9

� Huffman: Huffman: Huffman: Huffman: Contains mainmainmainmain The algorithm:The algorithm:The algorithm:The algorithm:
◦ Count character frequencies and build a list of Leaf

nodes containing the characters and their frequencies
◦ Use these nodes to build a PrioritytQueue of single-

character Huffman trees
◦ dodododo

� Take two smallest (in terms of total weight)
trees from the PQ

� Combine these nodes into a new tree whose
total weight is the sum of the weights of the new
tree

� Put this new tree into the PQ
while there is more than one tree while there is more than one tree while there is more than one tree while there is more than one tree leftleftleftleft

The one remaining tree will be an optimal tree
for the entire message

� These are mainly here so that
◦ You can see an overview of the most important

parts of the code before looking at the code on-
line.

4/16/2012

10

class Leaf { // Leaf node of a Huffman tree.

char ch; // the character represented

// by this node.

int frequency; // frequency of this

// character in message.

public Leaf(char c, int freq) {

ch = c;

frequency = freq;

}

}

class HuffmanTree implements Comparable<HuffmanTree> {

BinaryNode root; // root of tree

int totalWeight; // weight of tree

static int totalBitsNeeded;

// bits needed to represent entire message

// (not including code table).

public HuffmanTree(Leaf e) {

root = new BinaryNode(e, null, null);

totalWeight = e.frequency;

}

public HuffmanTree(HuffmanTree left, HuffmanTree right) {

// pre: left and right are non-null

// post: merge two trees together and add their weights

this.totalWeight = left.totalWeight + right.totalWeight;

root = new BinaryNode(null, left.root, right.root);

}

public int compareTo(HuffmanTree other) {

return (this.totalWeight - other.totalWeight);

}

On this slide:
fields
constructors
compareTo

4/16/2012

11

public void print() {

// print out strings associated with characters in tree

totalBits = 0;

print(this.root, "");

System.out.println("Total bits for entire message: "+ totalBits);

}

protected static void print(BinaryNode r,

String representation) {

// print out strings associated with chars in tree r,

// prefixed by representation

if (r.getLeft() != null) { // interior node

print(r.getLeft(), representation + "0"); // append a 0

print(r.getRight(), representation + "1"); // append a 1

} else { // leaf; print its code

Leaf e = (Leaf) r.getElement();

System.out.println("Encoding of " + e.ch + " is " +

representation + " (frequency was " + e.frequency +

", length of code is " + representation.length() + ")");

totalBits += (e.frequency * representation.length());

}

}

public static void main(String args[]) throws Exception {

Scanner sc = new Scanner(System.in);

HashMap<Character, Integer> freq =

new HashMap<Character,Integer>();

// List of characters and their frequencies in the //

// message that we are encoding.

String oneLine; // current input line.

// First read the data and count frequencies

// Go through each input line, one character at a time.

System.out.println(

"Message to be encoded (CTRL-Z to end):");

while sc.hasNext()) {

oneLine = sc.next();

for (int i = 0; i<oneLine.length(); i++) {

char c = oneLine.charAt(i);

if (freq.containsKey(c))

freq.put(c, freq.get(c)+1);

else // first time we've seen c

freq.put(c, 1);

}

}

4/16/2012

12

// Now the table of frequencies is complete.

// put each character into its own Huffman tree (leaf node)

PriorityQueue<HuffmanTree> treeQueue =

new PriorityQueue<HuffmanTree>();

for (char c : freq.keySet())

treeQueue.add(new HuffmanTree(new Leaf(c, freq.get(c))));

// build the tree bottom up

HuffmanTree smallest, secondSmallest;

// merge trees in pairs until only one tree remains

while (true) {

smallest = treeQueue.poll();

secondSmallest = treeQueue.poll();

if (secondSmallest == null) break; // tree is complete

// add bigger tree containing both to the sorted list.

treeQueue.add(new HuffmanTree(smallest, secondSmallest));

}

// print the only tree left in the PQ of Huffman trees.

smallest.print();

}

� Three or four bytes per character
◦ The character itself.

◦ The frequency count.

� End of table signaled by 0 for char and count.

� Tree can be reconstructed from this table.

� The rest of the file is the compressed
message.

4/16/2012

13

� The Huffman code is provably optimal
among all single-character codes for a given
message.

� Going farther:
◦ Look for frequently-occurring sequences of

characters and make codes for them as well.

A taste of artificial intelligence

Check out Queens from SVN

4/16/2012

14

� Given: a (large) set of possible solutions to a
problem

� Goal: Find all solutions (or an optimal
solution) from that set

� Questions we ask:
◦ How do we represent the possible solutions?
◦ How do we organize the search?
◦ Can we avoid checking some obvious non-

solutions?

The “search space”

� Examples: solving a maze, the “15” puzzle.

� Taken from:
◦ http://www.cis.upenn.edu/~matuszek/cit594-

2004/Lectures/38-backtracking.ppt

4/16/2012

15

start ?

?

dead end

dead end

?
?

dead end

dead end

?

success!

dead endhttp://www.cis.upenn.ed
u/~matuszek/cit594-
2004/Lectures/38-
backtracking.ppt

◦ In how many ways can N chess queens be placed on
an NxN grid, so that none of the queens can attack
any other queen?

◦ I.e. there are not two queens on the same row,
same column, or same diagonal.

� There is no "formula"
for generating a solution.

http://en.wikipedia.org/wiki/Queen_(chess)

4/16/2012

16

� In how many ways can N chess queens be
placed on an NxN grid, so that none of the
queens can attack any other queen?
◦ I.e. no two queens on the same row, same column,

or same diagonal.

Two minutes
No Peeking!

� Very Very Very Very naive approach. Perhaps stupid is a better naive approach. Perhaps stupid is a better naive approach. Perhaps stupid is a better naive approach. Perhaps stupid is a better

word!word!word!word!

There are N queens, N2 squares.

� For each queen, try every possible square,

allowing the possibility of multiple queens in the

same square.

◦ Represent each potential solution as an N-item array of

pairs of integers (a row and a column for each queen).

◦ Generate all such arrays (you should be able to write

code that would do this) and check to see which ones are

solutions.

◦ Number of possibilities to try in the NxN case:

◦ Specific number for N=8:
281,474,976,710,656281,474,976,710,656281,474,976,710,656281,474,976,710,656

Q11Q11Q11Q11

4/16/2012

17

Slight Slight Slight Slight improvement.improvement.improvement.improvement. There are N queens, N2

squares. For each queen, try every possible
square, notice that we can't have multiple
queens on the same square.

◦ Represent each potential solution as an N-item
array of pairs of integers (a row and a column for
each queen).

◦ Generate all such arrays and check to see which
ones are solutions.

◦ Number of possibilities to try in NxN case:

◦ Specific number for N=8:

178,462,987,637,760178,462,987,637,760178,462,987,637,760178,462,987,637,760

(vs. 281,474,976,710,656)(vs. 281,474,976,710,656)(vs. 281,474,976,710,656)(vs. 281,474,976,710,656)

� Slightly Slightly Slightly Slightly better approach.better approach.better approach.better approach. There are N queens, N

columns. If two queens are in the same column, they

will attack each other. Thus there must be exactly one

queen per column.

� Represent a potential solution as an N-item array of

integers.

◦ Each array position represents the queen in one column.

◦ The number stored in an array position represents the row of

that column's queen.

◦ Show array for 4x4 solution.

� Generate all such arrays and check to see which ones are

solutions.

� Number of possibilities to try in NxN case:

� Specific number for N=8:
16,777,21616,777,21616,777,21616,777,216

4/16/2012

18

� Still Still Still Still better better better better approachapproachapproachapproach There must also be
exactly one queen per row.

� Represent the data just as before, but notice
that the data in the array is a set!
◦ Generate each of these and check to see which ones

are solutions.

◦ How How How How to generate?to generate?to generate?to generate? A good thing to think about.

◦ Number of possibilities to try in NxN case:

◦ Specific number for N=8:

40,32040,32040,32040,320

� Backtracking solutionBacktracking solutionBacktracking solutionBacktracking solution

� Instead of generating all permutations of N

queens and checking to see if each is a

solution, we generate "partial placements" by

placing one queen at a time on the board

� Once we have successfully placed k<N

queens, we try to extend the partial solution

by placing a queen in the next column.

� When we extend to N queens, we have a

solution.

4/16/2012

19

� Play the game:
◦ http://homepage.tinet.ie/~pdpals/8queens.htm

� See the solutions:
◦ http://www.dcs.ed.ac.uk/home/mlj/demos/queens

>java RealQueen 5
SOLUTION: 1 3 5 2 4
SOLUTION: 1 4 2 5 3
SOLUTION: 2 4 1 3 5
SOLUTION: 2 5 3 1 4
SOLUTION: 3 1 4 2 5
SOLUTION: 3 5 2 4 1
SOLUTION: 4 1 3 5 2
SOLUTION: 4 2 5 3 1
SOLUTION: 5 2 4 1 3
SOLUTION: 5 3 1 4 2

4/16/2012

20

� Board configuration represented by a linked
list of Queen objects

Fields of RealQueenRealQueenRealQueenRealQueen:

column

row

neighbor

Designed by Timothy Budd
http://web.engr.oregonstate.edu/~budd/Books/oopintro3e/info/slides/chap06/java.htm

Q12Q12Q12Q12----15151515

� Each queen sends messages directly to its
immediate neighbor to the left (and
recursively to all of its left neighbors)

� Return value provides information concerning
allallallall of the left neighbors:

� Example: neighbor.canAttack(currentRow, col)
◦ Message goes to the immediate neighbor, but the

real question to be answered by this call is

◦ "Hey, neighbors, can any of you attack me if I place
myself on this square of the board?"

4/16/2012

21

� findFirst()

� findNext()

� canAttack(int row, int col)

16161616----20202020

Your job (part of WA6):
Understand the job of each of these methodsUnderstand the job of each of these methodsUnderstand the job of each of these methodsUnderstand the job of each of these methods

Javadoc from the Queen interface can helpJavadoc from the Queen interface can helpJavadoc from the Queen interface can helpJavadoc from the Queen interface can help
Fill in the (recursive) details in the RealQueen class
DebugDebugDebugDebug

More details on next slideMore details on next slideMore details on next slideMore details on next slide

1. Queen asks its neighbors to find the first position
in which none of them attack each other
◦ Found? Then queen tries to position itself so that it

cannot be attacked.

2. If the rightmost queen is successful, then a
solution has been found! The queens cooperate
in recording it.

3. Otherwise, the queen asks its neighbors to find
the next position in which they do not attack
each other

4. When the queens get to the point where there is
no next non-attacking position, all solutions
have been found and the algorithm terminates

