CSSE 230 Day 13

Balanced Trees

Due this week

» Displayable due today, but "grace day until
tomorrow 8 AM)
o Lal)o assistants tonightin F217 (Doug 7-9, Brian 9-
11
» EditorTrees team preference survey due
Wednesday at noon.
> Teams of three.

- | will try to avoid "performance mismatches", so
survey asks for your overall course average.

- Read item description on ANGEL for more details.
» WAS due Thursday

> Includes first "threaded" problem, so start early.
» Doublets Milestone 1 due Friday

- Aim for earlier; Milestone 1 is considerably less
than the halfway point of code for the project.

4/9/2012

Today's Agenda

» Your questions (about anything)

» Doublets: what's it all about?

» Meet your Doublets partner

» Return exams and discuss a few of problems
» Another induction example

» The need for balanced trees

» Analysis of worst case for completely
balanced trees

» (After the break) Analysis of worst case for
height-balanced (AVL) trees

» AVL tree balance after insert.

» This is a lot: Some of the AVL tree stuff may
spill over into tomorrow

Doublets: What's it all about?

Welcome to Doublets, a game of "verbal torture.”

Enter starting word: flour

Enter ending word: bread

Enter chain manager (s: stack, q: queue, x: exit): s

Chain: [flour, floor, flood, blood, bloom, gloom, groom, broom, brood, broad, bread]

Length: 11

Candidates: 16 A Link is the collection of all words that
Max size: 6 can be reached from a given word in
Enter starting word: wet one step. l.e. all words that can be
Enter ending word: dry made form the given word by

Enter chain manager (s: stack, q: queue, x: exit): g substituting a single letter
Chain: [wet, set, sat, say, day, dry] '
Length: 6

Candidates: 82651 A Chainis a sequence of words (no

Max size: 847047 duplicates) such that each word can be
Enter starting word: oat made from the one before it by a single
Enter ending word: rye letter substitution.

The word "oat" is not valid. Please try again.

Enter starting word: owner A ChainManager stores a collection of
Enter ending word: bribe chains, and tries to extend one at a

Enter chain manager (s: stack, q: queue, x: exit): s time. with a goal of extending to the
No doublet chain exists from owner to bribe. ending ord

Enter starting word: C
Enter chain manager (s: stack, q: queue, x: exit): x

Goodbye! StackChainManager: depth-first search

QueueChainManager: breadth-first search
PriorityQueueChainManager: First extend the chain that ends with a word
that is closest to the ending word.

4/9/2012

Doublets pairs, repositories: Section 1

csse230-201230-doublets-11,amesen,piliseal
csse230-201230-doublets-12,dingx,elswicwj,weirjm
csse230-201230-doublets-13,eubankct,sanderej
csse230-201230-doublets-14,goldthea,maglioms
csse230-201230-doublets-15,harbisjs,murphysw
csse230-201230-doublets-16,huangz,namdw
csse230-201230-doublets-17,jarvisnw,mcdonabj
csse230-201230-doublets-18,mccullwc,yuhasmj
csse230-201230-doublets-19,mehrinla,morrista
csse230-201230-doublets-20,millerns,koestedj
csse230-201230-doublets-21,newmansr,rudichza
csse230-201230-doublets-22,nuanests,shahdk
csse230-201230-doublets-23,paulbi,woolleld
csse230-201230-doublets-24,postcn,rujirasl
csse230-201230-doublets-25,semmeln,timaeudg

Meet your partner,
exchange contact
info, plan when
you can meet
again.

There will be in-
class work time
days 14 and 15.

Doublets pairs, repositories: Section 2

csse230-201230-doublets-26,bolivabd,memeriaj
csse230-201230-doublets-27,davelldf,iwemamj
csse230-201230-doublets-28,ewertbe,spryct
csse230-201230-doublets-29,faulknks,hopwoocp
csse230-201230-doublets-30,fendrirj,pohltm
csse230-201230-doublets-31,gartzkds,minardar
csse230-201230-doublets-32,haydr,lawrener
csse230-201230-doublets-33,modivr,qinz
csse230-201230-doublets-34,lius,weil
csse230-201230-doublets-35,mengx,stewarzt
csse230-201230-doublets-36,meyermc,yuhasem
csse230-201230-doublets-37,roetkefj,uphusar
csse230-201230-doublets-38,ruthat,tilleraj
csse230-201230-doublets-39,scroggd,watterim
csse230-201230-doublets-40,taylorem,zhangz

Meet your partner,
exchange contact
info, plan when
you can meet
again.

There will be in-
class work time
days 14 and 15.

4/9/2012

Exam question 2

2. (14 points) Give the big-theta worst-case running time for the most efficient algorithm for each problem

_nlog n__ merge sort an amay ofn elements Every sortis Q(n). Why?

_n sequential search of an amray of n elements
_2n solve towers of Hanoi for n disks
Worst case is not a balanced
__n__ insert a new node into a binary tree with n elements
tree
__n___ post-order traversal of a tree with n elements

nlog n _ determine whether an array of n elements represents a set (i.e., has no duplicate elements)

t

_ n__findthe maximum contiguous subsequence sum in an array of n numbers
Merge sort
We studied an O(n) (nlog n),
algorithmin class, and it then look at
is in the textbook. adjacent
elements

(n)

Exam questions 6

6. (8 points) Use the formal definition of O or Q (the existence of constants no and c) to prove one of
the following statements. Both are true, but you are only asked to show one of them. No extra
points for doing both.

a. Iff(n)=n?-7 and g(n) = n?, show that f(n) is Q(g(n)).
b. Ois transitive. ILe.if f(n)is O(g(n)) and g(n) is O(h(n)). then f(n) is O(h(n)).

‘Which part are you proving? (circle it) a b

a. Example: ¢=%. Then we need n?-7 >% n2. This gives us n? > 14, which is true for
n=>4. So ni=4. (or any larger number).

[c can be any number between 0 and 1, and n0 is calculated similarly for each]

b. Since f(n) is O(g(n)) there are constants n) and c; such that f(n) £ c1 g(n) for all n> n;.
Similarly,
Since g(n) is O(h(n)) there are constants n: and c2 such that g(n) £ c; h(n) for all n> n».

Now let no = max(n1, n2). If n> no, then n> nj and If n> no.

Thus for all n> no, f(n) £ c1 g(n) £ c1 2 h(n), so ¢ = c1 c2 works.

4/9/2012

Exam problem 7

public static boolean hasSpecial (List<Integer> c) {
for (int i=0; i<c.size(); i++)
for(int j = i+l; j< c. size(); J++)
for (int k=0; k<c.size(); k++)
if(c.get (i) + c.get(j) == c.get(k))
return true;
return false;
}
What is the worst-case big-theta running time when the list is an ArrayList?
The code that runs most often here is the testin the /£ In an ArrayList, this
test runs in constant time, so we get (in Maple notation)
sum(sum(sum(l,k =0..n-1),j=i+1..n-1),i =0..n-1);
thevalueis Y2 n2(n-1), which is O(n3).
b. (3) What is the worst-case running time when the list is a LinkedList?
The code that runs most often here is again the testin the /£ In a linked list,
this test runs in time proportionalto i + j + k, so we get (in Maple notation)
sum(sum(sum(i+j+ k,k=0..n-1),j=i+1..n-1),i=0..n-1);
thevalueis 3 n2(n2-2n +1), whichis ©(n?).
c. (3) Suppose it takes 2 seconds (worst case) to run on a 1,000-item
ArrayList. Approximately how long (worst case) will it take to runon a
3,000-item ArrayList?
Since the worst case growth rate is proportional to n3, multiplying n by 3
multiples n3 by 33, 2*27 = 54 seconds.

Programming : Use PQ to implement Queue

T value;
int sequenceNumber;

this.sequenceNumber = s;

"

@0verride

PQItem pgi = this.pg.poll();
if (pgi == null)

throw new NoSuchElementException(“degueue: empty queue®);

4/9/2012

Another induction example (we'll use this result) Q!

» Recall our definition of the Fibonacci
numbers:
° FO=01 Fl =]1Fn+2=Fn+] +Fn

» An exercise from the textbook

78 Prove by induction the formula

P

Recall: How to show that property P(n) is true for all n=ny:
(1) Show the base case(s) directly
(2) Show that if P(j) is true for all j with ny<j<k, then P(k) is true also

Details of step 2:
a. Write down the induction assumption for this specific problem
b. Write down what you need to show
c. Show it, using the induction assumption

Review: The number of nodes in a tree with
height h(T) is bounded

A
h(T)
T T
Y
N = h(T) + 1 N(T) < 2hM+1

4/9/2012

4/9/2012

Review: Therefore the height of a tree with N(T)
nodes is also bounded

h(T) < N(T) - 1

1

h(T) = [log(N(T)+1)1 -1

v/ '

We want to keep trees balanced so that the run @2
run time of BST algorithms is minimized

» BST algorithms are O(h(T))
» Minimum value of h(T) is [log(N(T)+1)7 -1

» Can we rearrange the tree after an insertion
to guarantee that h(T) is always minimized?

But keeping complete balance is too expensive!

» Height of the tree can vary from log N to N
Where would J go in this tree?
» What if we keep the tree perfectly balanced?
> so height is always proportional to log N
» What does it take to balance that tree?
» Keeping completely balanced is too expensive:
> O(N) to rebalance after insertion or deletion

o

v

rebalance

R

Solution: Height Balanced Trees (less is more)

Q3

Height-Balanced Trees have subtrees
whose heights differ by at most 1

N
(B)
®A© @Q@@)

More precisely , a binary tree T is height
balanced if
T is empty, or if
| height(T,) - height(T;) | <1, and
T, and Ty are both height balanced.

Q4

4/9/2012

What is the tallest height-balanced tree Q>
with N nodes?

Is it taller than a completely balanced tree?

> Consider the dual concept: find the minimum
number of nodes for height h.

A binary search tree T is height
balanced if
T is empty, or if
| height(T,) - height(Tz) | <1, and
T, and Ty are both height balanced.

Break

» And then exam discussion

4/9/2012

4/9/2012

An AVL tree is a height-balanced BST that Q6-7
maintains balance using “rotations”

» Named for authors of original paper,
Adelson-Velskii and Landis (1962).

» Max. height of an AVL tree with N nodes is:
H< 1.441log (N+2)-1.328 = O(log N)

Our goal is to rebalance an AVL tree Q8
after insert/delete in O(log n) time

» Why?
» Worst cases for BST operations are O(h(T))
o find, insert, and delete

» h(T) can vary from O(log N) to O(N)
» Height of a height-balanced tree is O(log N)

» So if we can rebalance after insert or delete in
O(log N), then all operations are O(log N)

10

AVL nodes are just like BinaryNodes,
but also have an extra “balance code”

: or C or :
Different representations for / =\ :

- Just two bits in a low-level language
- Enum in a higher-level language

AVL Tree (Re)balancing Act

» Assume tree is height-balanced
before insertion

» Insert as usual for a BST

» Move up from the newly inserted node
to the lowest “unbalanced” node (if
any)
> Use the balance code to detect this - how?

» Do appropriate rotation to balance the
sub-tree rooted at this unbalanced
node

4/9/2012

11

We rotate by pulling the “too tall” sub-tree up
and pushing the “too short” sub-tree down

» Two basic cases
- “See saw” case:
- Too-tall sub-tree is on the outside
- So tip the see saw so it’s level
> “Suck in your gut” case:
- Too-tall sub-tree is in the middle
- Pull its root up a level

Single Left Rotation

Middle sub-tree
attaches to lower node
of the “see saw”

Q9-10

4/9/2012

12

Double Left Rotation

Ql1-12

Unbalanced node

becomes

& N 4 \
SO (o
new

new

(h)

Pulled up :
Split between the
nodes pushed down
Weiss calls this “right-left double rotation”

Q13-14

O(log N)?

» Both kinds of rotation leave height the same
as before the insertion!

» Is insertion plus rotation cost really O(log N)?

4/9/2012

13

Which kind of rotation to do?

Depends on the first two links in the path from
the node with the imbalance (A) down to the
newly-inserted node.

(down from A) (down from A's (rotate "around
child) A's position")
Left Left Single right
Left Right Double right
Right Right Single left
Right Left Double left

Your turn — work with a partner (ifwe don't run out of time) Q15-17

! * vy
|
N nev
» Write the method:
» BalancedBinaryNode singleRotateleft (
BalancedBinaryNode parent, /* A *x/
BalancedBinaryNode child /* B *¥/) {

}

» Returns a reference to the new root of this subtree.
» Don’t forget to set the balanceCode fields of the nodes.

4/9/2012

14

Your turn — (after class?)

» Write the method:

» BalancedBinaryNode doubleRotateleft (
BalancedBinaryNode parent, /* A *x/
BalancedBinaryNode child, /* C */
BalancedBinaryNode grandChild /* B */) {

}

» Returns a reference to the new root of this
subtree.

A sample AVL tree

Insert HA 1into the tree, then DA, then O.
Delete G from the original tree, then I, J, V.

4/9/2012

15

Your turn again (probably not until tomorrow)

» Start with an empty AVL tree.

» Add elements in the following order; do
the appropriate rotations when needed.
©12345611131210987

» How should we rebalance if each of the
following sequences is deleted from the
above tree?
> (109 78) (13) (1 5)

- For each of the three sequences, start with the

original 13-element tree. E.g. when deleting
13, assume 10 9 8 7 are still in the tree.

4/9/2012

16

