CSSE 230 Day 13
 Balanced Trees

Due this week

- Displayable due today, but "grace day until tomorrow 8 AM)
- Lab assistants tonight in F217 (Doug 7-9, Brian 911)
- EditorTrees team preference survey due Wednesday at noon.
- Teams of three.
- I will try to avoid "performance mismatches", so survey asks for your overall course average.
- Read item description on ANGEL for more details.
- WA5 due Thursday

Includes first "threaded" problem, so start early.

- Doublets Milestone 1 due Friday
- Aim for earlier; Milestone 1 is considerably less than the halfway point of code for the project.

Today's Agenda

- Your questions (about anything)
, Doublets: what's it all about?
- Meet your Doublets partner
- Return exams and discuss a few of problems
- Another induction example
- The need for balanced trees
- Analysis of worst case for completely balanced trees
- (After the break) Analysis of worst case for height-balanced (AVL) trees
- AVL tree balance after insert.
- This is a lot: Some of the AVL tree stuff may spill over into tomorrow

Doublets: What's it all about?

Welcome to Doublets, a game of "verbal torture."
Enter starting word: flour
Enter ending word: bread
Enter chain manager (s: stack, q: queue, x: exit): s
Chain: [flour, floor, flood, blood, bloom, gloom, groom, broom, brood, broad, bread] Length: 11
Candidates: 16
Max size: 6
Enter starting word: wet
Enter ending word: dry
Enter chain manager (s: stack, q: queue, x: exit): q
Chain: [wet, set, sat, say, day, dry]
Length: 6
Candidates: 82651
Max size: 847047
Enter starting word: oat
Enter ending word: rye
The word "oat" is not valid. Please try again.
Enter starting word: owner
Enter ending word: bribe
Enter chain manager (s: stack, q: queue, x: exit): s
No doublet chain exists from owner to bribe.
Enter starting word: C

A Link is the collection of all words that can be reached from a given word in one step. I.e. all words that can be made form the given word by substituting a single letter.

A Chain is a sequence of words (no duplicates) such that each word can be made from the one before it by a single letter substitution.

A ChainManager stores a collection of chains, and tries to extend one at a time, with a goal of extending to the ending word.

Goodbye!
StackChainManager: depth-first search
QueueChainManager: breadth-first search
PriorityQueueChainManager: First extend the chain that ends with a word that is closest to the ending word.

Doublets pairs, repositories: Section 1

csse230-201230-doublets-11,amesen, piliseal
csse230-201230-doublets-12,dingx,elswicwj,weirjm csse230-201230-doublets-13,eubankct,sanderej csse230-201230-doublets-14,goldthea,maglioms csse230-201230-doublets-15,harbisjs,murphysw csse230-201230-doublets-16,huangz,namdw csse230-201230-doublets-17,jarvisnw,mcdonabj csse230-201230-doublets-18,mccullwc,yuhasmj csse230-201230-doublets-19, mehrinla,morrista csse230-201230-doublets-20, millerns, koestedj csse230-201230-doublets-21,newmansr,rudichza csse230-201230-doublets-22,nuanests,shahdk csse230-201230-doublets-23, paulbi,woolleld csse230-201230-doublets-24,postcn,rujirasl csse230-201230-doublets-25,semmeln,timaeudg

Meet your partner,
exchange contact
info, plan when
you can meet
again.
There will be in-
class work time
days 14 and 15.

-

Doublets pairs, repositories: Section 2

csse230-201230-doublets-26,bolivabd,memeriaj csse230-201230-doublets-27,davelldf,iwemamj csse230-201230-doublets-28,ewertbe,spryct csse230-201230-doublets-29,faulknks,hopwoocp csse230-201230-doublets-30,fendrirj, pohltm csse230-201230-doublets-31,gartzkds,minardar csse230-201230-doublets-32,haydr,lawrener csse230-201230-doublets-33,modivr,qinz csse230-201230-doublets-34,lius, weil

Meet your partner, exchange contact info, plan when you can meet again.

There will be inclass work time days 14 and 15.
csse230-201230-doublets-35,mengx,stewarzt csse230-201230-doublets-36,meyermc,yuhasem csse230-201230-doublets-37,roetkefj, uphusar csse230-201230-doublets-38,ruthat,tilleraj csse230-201230-doublets-39,scroggd,watterlm csse230-201230-doublets-40,taylorem,zhangz

Exam question 2

2. (14 points) Give the big-theta worst-case running time for the most efficient algorithm for each problem
${ }^{n}{ }^{n} \log n _$merge sort an array of n elements Every sort is $\Omega(n)$. Why?
\qquad
\qquad sequential search of an array of n elements
\qquad
\qquad solve towers of Hanoi for n disks
\qquad
\qquad insert a new node into a binary tree with n elements

Worst case is not a balanced
\qquad tree
\qquad post-order traversal of a tree with n elements
_ $\quad \mathbf{n} \log \mathbf{n}$ _ determine whether an array of n elements represents a set (i.e., has no duplicate elements) _n \qquad find the maximum contiguous subsequence sum in an array of n numbers

We studied an $\mathrm{O}(\mathrm{n})$ algorithm in class, and it is in the textbook.
\uparrow
Merge sort
(n log n),
then look at
adjacent
elements
(n)

Exam questions 6

6. (8 points) Use the formal definition of O or Ω (the existence of constants n_{0} and c) to prove one of the following statements. Both are true, but you are only asked to show one of them. No extra points for doing both.
a. If $f(n)=n^{2}-7$ and $g(n)=n^{2}$, show that $f(n)$ is $\Omega(g(n))$.
b. O is transitive. I.e. if $f(n)$ is $O(g(n))$ and $g(n)$ is $O(h(n))$, then $f(n)$ is $O(h(n))$

Which part are you proving? (circle it) a b
a. Example: $c=1 / 2$. Then we need $n^{2}-7 \geq 1 / 2 n^{2}$. This gives us $n^{2} \geq 14$, which is true for $n \geq 4$. So $n_{0}=4$. (or any larger number).
[c can be any number between 0 and 1 , and $n 0$ is calculated similarly for each]
b. Since $f(n)$ is $O(g(n))$ there are constants n_{1} and c_{1} such that $f(n) \leq c_{1} g(n)$ for all $n \geq n_{1}$. Similarly,
Since $g(n)$ is $O(h(n))$ there are constants n_{2} and c_{2} such that $g(n) \leq c_{2} h(n)$ for all $\mathbf{n} \geq n_{2}$.

Now let $\mathbf{n}_{0}=\max \left(\mathbf{n}_{1}, \mathbf{n}_{2}\right)$. If $\mathbf{n} \geq \mathbf{n}_{0}$, then $\mathbf{n} \geq \mathbf{n}_{1}$ and If $\mathbf{n} \geq \mathbf{n}_{\mathbf{2}}$.

Thus for all $\mathbf{n} \geq \mathbf{n}_{0}, f(\mathbf{n}) \leq \mathbf{c}_{1} \mathbf{g}(\mathbf{n}) \leq \mathbf{c}_{1} \mathbf{c}_{2} \mathbf{h}(\mathbf{n})$, so $\mathbf{c}=\mathbf{c}_{1} \mathbf{c}_{2}$ works.

Exam problem 7

```
public static boolean hasSpecial (List<Integer> c) {
    for(int i=0; i<c.size(); i++ )
        for(int j = i+1; j< c. size(); j++)
            for(int k=0; k<c.size(); k++)
                if(c.get(i) + c.get(j) == c.get(k))
                return true;
    return false;
}
```

What is the worst-case big-theta running time when the list is an ArrayList?
The code that runs most often here is the test in the if. In an ArrayList, this
test runs in constant time, so we get (in Maple notation)
sum(sum(sum(1, $k=0 . . n-1), j=i+1 . . n-1), i=0 . . n-1)$;
the value is $1 / 2 n^{2}(n-1)$, which is $\Theta\left(n^{3}\right)$.
b. (3) What is the worst-case running time when the list is a LinkedList?
The code that runs most often here is again the test in the if. In a linked list,
this test runs in time proportional to $\mathbf{i}+j+k$, so we get (in Maple notation)
sum(sum(sum(i+j+k, $=0 . . n-1), j=i+1 . . n-1), i=0 . . n-1)$;
the value is $3 / 4 n^{2}\left(n^{2}-2 n+1\right)$, which is $\Theta\left(n^{4}\right)$.
c. (3) Suppose it takes 2 seconds (worst case) to run on a 1,000 -item ArrayList. Approximately how long (worst case) will it take to run on a 3,000-item ArrayList?
Since the worst case growth rate is proportional to n^{3}, multiplying n by 3 multiples n^{3} by $3^{3}, \quad 2 * 27=54$ seconds.

```
Programming: Use PQ to implement Queue
public class PQQueue<T> {
private PriorityQueue<PQItem> pq;
private static int sequence = 0; // the priority of items in the PQ
private class PQItem implements Comparable<PQItem> {
    T value;
    int sequenceNumber;
    public PQItem(T v, int s) {
        this.value = v;
        this.sequenceNumber = s;
    }
    @Override
    public int compareTo(POItem other) {
        return this.sequenceNumber - other. sequenceNumber;
    }
}
public PQQueue() {
    this.pg = new PriorityQueue<PQItem>();
}
public void enqueue(T value) {
    this.pg.add(new PQItem(value, sequence++));
}
public T dequeue() throws NoSuchElementException {
    PQItem pqi = this.pg.poll();
    if (pgi == null)
        throw new NoSuchElementException("dequeue: empty queue");
    return pqi.value;
```

Another induction example (we'll use this result) Q1

- Recall our definition of the Fibonacci numbers:
$F_{0}=0, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}$
- An exercise from the textbook
7.8 Prove by induction the formula

$$
F_{N}=\frac{1}{\sqrt{5}}\left(\left(\frac{(1+\sqrt{5})}{2}\right)^{N}-\left(\frac{1-\sqrt{5}}{2}\right)^{N}\right)
$$

Recall: How to show that property $P(n)$ is true for all $n \geq n_{0}$:
(1) Show the base case(s) directly
(2) Show that if $P(j)$ is true for all j with $n_{0} \leq j<k$, then $P(k)$ is true also

Details of step 2:

a. Write down the induction assumption for this specific problem
b. Write down what you need to show
c. Show it, using the induction assumption

Review: The number of nodes in a tree with height $h(T)$ is bounded

Review: Therefore the height of a tree with N(T) nodes is also bounded

We want to keep trees balanced so that the run Q2 run time of BST algorithms is minimized

- BST algorithms are $\mathrm{O}(\mathrm{h}(\mathrm{T})$)
- Minimum value of $h(T)$ is $\lceil\log (N(T)+1)\rceil-1$
- Can we rearrange the tree after an insertion to guarantee that $h(T)$ is always minimized?

But keeping complete balance is too expensive! Q3

- Height of the tree can vary from $\log \mathrm{N}$ to N
- Where would J go in this tree?
- What if we keep the tree perfectly balanced? - so height is always proportional to $\log \mathrm{N}$
- What does it take to balance that tree?
- Keeping completely balanced is too expensive: - $\mathrm{O}(\mathrm{N})$ to rebalance after insertion or deletion

Solution: Height Balanced Trees (less is more)

Height-Balanced Trees have subtrees whose heights differ by at most 1

(H)

More precisely, a binary tree T is height balanced if
T is empty, or if
$\mid \operatorname{height}\left(T_{L}\right)$ - height $\left(T_{R}\right) \mid \leq 1$, and T_{L} and T_{R} are both height balanced.

What is the tallest height-balanced tree

Is it taller than a completely balanced tree?

- Consider the dual concept: find the minimum number of nodes for height h.

A binary search tree T is height balanced if

T is empty, or if \mid height $\left(T_{L}\right)$ - height $\left(T_{R}\right) \mid \leq 1$, and T_{L} and T_{R} are both height balanced.

Break

- And then exam discussion

An AVL tree is a height-balanced BST that Q6-7 maintains balance using "rotations"

- Named for authors of original paper, Adelson-Velskii and Landis (1962).
- Max. height of an AVL tree with N nodes is: $H<1.44 \log (N+2)-1.328=O(\log N)$

Our goal is to rebalance an AVL tree

- Why?
- Worst cases for BST operations are $\mathrm{O}(\mathrm{h}(\mathrm{T})$)
find, insert, and delete
- $h(T)$ can vary from $O(\log N)$ to $O(N)$
- Height of a height-balanced tree is $\mathbf{O}(\log \mathbf{N})$
- So if we can rebalance after insert or delete in $\mathrm{O}(\log \mathrm{N})$, then all operations are $\mathrm{O}(\log \mathrm{N})$

AVL nodes are just like BinaryNodes, but also have an extra "balance code"

Different representations for / = \backslash :

- Just two bits in a low-level language
- Enum in a higher-level language

AVL Tree (Re)balancing Act

- Assume tree is height-balanced before insertion
- Insert as usual for a BST
- Move up from the newly inserted node to the lowest "unbalanced" node (if any)

- Use the balance code to detect this - how?
- Do appropriate rotation to balance the sub-tree rooted at this unbalanced node

We rotate by pulling the "too tall" sub-tree up and pushing the "too short" sub-tree down

- Two basic cases

- "See saw" case:
- Too-tall sub-tree is on the outside
- So tip the see saw so it's level
- "Suck in your gut" case:
- Too-tall sub-tree is in the middle
- Pull its root up a level

Single Left Rotation

Middle sub-tree
attaches to lower node
of the "see saw"

Diagrams are from Data Structures
by E.M. Reingold and W.J. Hansen.

Weiss calls this "right-left double rotation"
$\mathrm{O}(\log \mathrm{N})$?

- Both kinds of rotation leave height the same as before the insertion!
, Is insertion plus rotation cost really $\mathrm{O}(\log \mathrm{N})$?

Which kind of rotation to do?

Depends on the first two links in the path from the node with the imbalance (A) down to the newly-inserted node.

First link (down from A)	Second link (down from A's child)	Rotation type (rotate "around A's position")
Left	Left	Single right
Left	Right	Double right
Right	Right	Single left
Right	Left	Double left

Your turn - work with a partner (if we don't run out of time) Q15-17

- Write the method:
- BalancedBinaryNode singleRotateLeft (BalancedBinaryNode parent, /* A */ BalancedBinaryNode child /* B */) \{
\}
- Returns a reference to the new root of this subtree.
- Don't forget to set the balanceCode fields of the nodes.

Your turn - (after class?)

- Write the method:
, BalancedBinaryNode doubleRotateLeft (
BalancedBinaryNode parent, /* A */ BalancedBinaryNode child, /* C */ BalancedBinaryNode grandChild /* B */) \{
\}
- Returns a reference to the new root of this subtree.

Insert HA into the tree, then DA, then \mathbf{O}.
Delete G from the original tree, then I, J, V.

Your turn again (probably not until tomorrow)

- Start with an empty AVL tree.
- Add elements in the following order; do the appropriate rotations when needed. -12345611131210987
- How should we rebalance if each of the following sequences is deleted from the above tree?
-(10 978) (13) (15)
For each of the three sequences, start with the original 13 -element tree. E.g. when deleting 13, assume 10987 are still in the tree.

