CSSE 230 Day 2

Growable Arrays Recap Induction intro Big-Oh and its cousins

Answer Q1 from today's inclass quiz. Enter attendance PIN.

Reminders

- Due tomorrow at 8 AM:
 - $^{\circ}$ Diagnostic quizzes 2 and 3 on ANGEL
- Due Thursday at 8 AM: Written assignment 1
- See Schedule page for things due later

Grading		
Criteria	Weight	
In-class quizzes	5%	
HW, prog. problems, in-class exercises	30%	
Major project	10%	
Exam 1 (Wednesday, March 28, 7-9 PM)	15%	
Exam 2 (Tuesday, May 8, 7-9 PM)	18%	
Exam 3 (during finals week)	22%	
 Caveats Must have passing exam average to pass Must demonstrate individual programmin Three or more unexcused absences may 	course 1 <mark>9 competenc</mark> e result in failur	e Q2

Interlude

On Liquor Production by David M. Smith

A friend who's in liquor production Owns a still of astounding construction. The alcohol boils Through old magnetic coils; She says that it's "proof by induction."

Q8-10

- A function f(n) is (in) O(g(n)) if there exist two positive constants c and n₀ such that for all n≥ n₀, f(n) ≤ c g(n)
- So all we must do to prove that f(n) is O(g(n)) is produce two such constants.
- f(n) = n + 12, g(n) = ???.
- f(n) = n + sin(n), g(n) = ???
- $f(n) = n^2 + sqrt(n), g(n) = ???$

Assume that all functions have non-negative values, and that we only care about $n \ge 0$. For any function g(n), O(g(n)) is a set of functions.

 $\begin{array}{l}
\Omega?\\ \Theta?
\end{array}$ • The "Big-Oh" Notation • given functions f(n) and g(n), we say that f(n) is O(g(n)) if and only if $f(n) \leq c g(n)$ for $n \geqslant n_0$ • c and n_0 are constants, f(n) and g(n) are functions over non-negative integers • $g(n) = \frac{1}{n_0} \int_{n_0}^{n_0} \int_{n_0}^{n_$

