CSSE 230 Day 1

Brief Course Intro Math Review
Growable Array Analysis

Pick up an in-class quiz from the table near the door

In-class Quizzes: what and why?

Agenda

- Roll Call (Now)
- Please tell me
- What name you prefer to be called
- How to pronounce your name if I don't get it right.
- A few administrative details
- Brief tour of course materials
- Review: Algorithm Analysis/math formulas
- Growable Arrays exercise

A Few Instructor Facts

- Degrees: Caltech, Illinois, Indiana (MA, MA, CS)
- This is my $24^{\text {th }}$ year at Rose
- Have taught about 20 different courses; favorites are ...
, I have 9 children, ages 10-30, 4 grandchildren
- I live very close to campus
- Summer 2010 I was diagnosed with a very rare connective tissue disease, scleromyxedema
- Thanks to God's grace and a miracle drug, IVIG, it is under control
- I may have to miss a day's class for treatment
- I really like it when you include 230 as part (but not all) of the subject line in emails to me

Contact Info

- Claude's Office: F210
- MTR 2:30-5:00 PM (except when I have meetings*)
- WF all day (except when I have meetings*)
* See my schedule, linked from course Syllabus

I try to keep it up-to-date

- Lab assistant(s) in F217:
- Times and staff to be determined

If you know of someone who did well in 230 who is looking for a Work-study or work-opportunity job, send him/her to me.
, Phone: x8331

- Email: anderson@rose-hulman.edu
- Better: csse230-staff@rose-hulman.edu
- Best (for many questions): Discussion forums on ANGEL.

Email Subject Lines

, Please include 230 somewhere in your subject line

- And also include a real subject
- Examples:
- Bad: When's WarmupAndStretching due?
- Bad: CSSE 230
- Good: CSSE 230: When's WarmupAndStretching due?

R Riley, Christopher R	Re: Fitness challenge software Fri 2/29 2:35
Qu Diane Anderson	RE: Please tellme what you think of thi... Fri2/29 12
Chidanandan, Archana	FW: Visions for Theoretical Computer Science Fri 2/29 11:48
J Date: Thursday	
- Anderson, Claude W	CSSE 230: Classroom se..- Thu 2/E
	Q5 (there is no Q4)

A quick tour of the online course materials

- Syllabus
- Attendance required!
- Schedule page
- Look at imminent due dates
- Posted schedule is preliminary; may change as we go along.
- But the date for Exam 1 is fixed. (Wednesday March 28, 7-9 PM)
- ANGEL Discussion Forums and Drop Boxes

Major themes of the course

- Data structures and algorithms
- Efficient programming
- Calculating running times
- Proving properties of data structures and algorithms

Weiss Textbook

- Good mix of theory and practice, design and implementation.
- Lots of interesting language issues. He talks about Java, but applicable to other languages.
- Challenging problems, a good place to go as you review for exams.
, Read it!
- This week: Chapters 1-6.
- Most should be review, so you can skim those parts.
- Make notes of things to ask about or to focus on later.

Bonus points for reporting bugs

- In the textbook
- In any of my materials.
- Use the Bug Report Forum on ANGEL
, More details in the Syllabus.

Programming is not a spectator sport

And neither is this course.
Ask, evaluate, respond, comment!
Is it better to ask a question and risk revealing your ignorance, or to remain silent and perpetuate your ignorance?

Feel free to interrupt during class discussions

>> Learning trumps politeness in this course!

Assistance and Assistants!

- I want to help those who are working hard and need help
- And so do the student assistants
- Please feel free to come to us for help
- But we're not your mother ...
- YOU must take charge of your education
- Don't procrastinate!

Ask questions!

CSSE 230 Grading scale:

Grading Scale

Label Minimum Percent		
A	87.5	Edit Delete
B+	82.5	Edit Delete
B	77.5	Edit Delete
C+	72.5	Edit Delete
C	67.5	Edit Delete
F	0	Edit Delete

-Why the lower numbers for grade cut-offs?

- Why no D grades?

Something due almost every day this week!

- Lots of reading (skim, slow down on parts that are new)
- Introduce Yourself discussion forum on ANGEL (due Tuesday at 8 AM)
- ANGEL diagnostic quizzes (due Tuesday 8AM and Wednesday 8AM)
- First written assignment (due Thursday 8 AM),
- Multi-part programming assignment
- WarmUpAndStretching, due Monday at 8 AM.
- 5 days, 5 programs (start today!)
- Read the schedule page carefully as you prepare for each day.

Analysis/Math Review

Credit where credit is due...

- Images like this one:

- are from Data Structures and A/gorithms in JAVA by Michael Goodrich and Roberto Tomassia

Running Times

- Algorithms may have different time complexity on different data sets
- What do we mean by "Worst Case" time complexity?
- What do we mean by "Average Case" time complexity?
- What are some application domains where knowing the Worst Case time complexity would be important?

Average Case and Worst Case

You Floor Me

- Floor

$$
\lfloor x\rfloor=\text { the largest integer } \leq x
$$

- Ceiling

$$
\lceil x\rceil=\text { the smallest integer } \geq x
$$

- java.lang. Math, provides the static methods floor () and ceil()

Yes, yes. Sum of the time.

- Summations
- general definition:
$\sum_{i=s}^{t} f(i)=f(s)+f(s+1)+f(s+2)+\ldots+f(t)$
- where f is a function, s is the start index, and t is the end index

You call this progress?

- Geometric progression: $f(i)=a^{i}$
- given an integer $n \geq 0$ and a real number $0<a \neq 1$

$$
\sum_{i=0}^{n} a^{i}=1+a+a^{2}+\ldots+a^{n}=\frac{1-a^{n+1}}{1-a} \begin{gathered}
\text { Memorize } \\
\text { this } \\
\text { formula! }
\end{gathered}
$$

- geometric progressions exhibit exponential growth

Exercise: What is $\sum_{i=2}^{6} 3^{i}$?

If the opposite of pro is con, what's the opposite of progress?

- Arithmetic progressions:
- An example

$\begin{array}{c}\text { Memorize } \\ \text { this } \\ \text { formula! }\end{array}$
$\ldots+n=\frac{n^{2}+n}{2}$

Exercise: \sum^{40}. Also useful for today's Growable Arrays exercise!

Visual proofs

$$
\sum_{i=1}^{n} i=1+2+3+\ldots+n=\frac{n^{2}+n}{2}
$$

- two visual representations

Example: Selection Sort

for (i=n-1; i>0; i--) \{ find the largest element among a[0] ... $\mathrm{a}[\mathrm{i}]$; exchange the largest element with $\mathrm{a}[\mathrm{i}]$; \}
-How many comparisons of array elements are done?
-How many times are array elements copied?
(When you think you have the answers, compare with a partner)

Growable Array Analysis

》) An exercise in doubling, done by pairs of students

Growable Arrays

// Read an unlimited number of String; return a String []
public static String [] getStrings() \{
Scanner in $=$ new Scanner (System.in);
String [] array = new String[5]; Original array size = 5
System.out.println("Enter any number of strings, one per line; "
System.out.println("Terminate with empty line: ");
while (in.hasNextLine ()) \{ We don't know in advance how many String oneLine $=$ in.nextLine (); strings there will be if (oneLine.equals(""))
Grow
when break;
if (itemsRead = array.length)
array $=$ resize (array, array.length * 2); array[itemsRead++] = oneLine;
\}

System.out.println("Done reading");
return resize(array, itemsRead);
\}
How does resize () work? What is the main "overhead cost" of resizing?

Work on Growable Array Exercise

- Work with a partner
- Hand in the document before you leave today
- Get help as needed form me and the students assistants.

