
CSSE221:	
 Fundamentals	
 of	
 Software	
 Development	
 Honors	

Homework	
 6	
 Solutions	
 	

Programming	
 assignment	

Finish	
 Markov	
 part	
 1,	
 as	
 stated	
 in	
 the	
 specification,	
 being	
 sure	
 you	
 have	
 checked	
 in	
 your	
 final,	
 fully	

documented	
 copy	
 to	
 the	
 repository.	

Written	
 homework	
 to	
 do	
 before	
 week	
 6	
 (due	
 before	
 beginning	
 of	
 class	
 next	
 Monday).	

As	
 usual,	
 please	
 bring	
 hardcopy	
 for	
 written	
 answers	
 to	
 class	
 to	
 hand	
 in	
 on	
 Monday.	

1. No	
 late	
 days	
 for	
 questions	
 3-­‐7,	
 so	
 I	
 can	
 post	
 solutions	
 in	
 time	
 to	
 study	
 for	
 the	
 exam.	
 However,	
 you	

may	
 use	
 a	
 late	
 day	
 if	
 you	
 need	
 it	
 for	
 Q8.	

	

2. Make	
 sure	
 you	
 are	
 familiar	
 with	
 the	
 material	
 in	
 the	
 reading	
 for	
 the	
 week.	

	

3. Write a method that takes a linked list as an argument and removes every other element from
it. It should mutate the list, so will be a void function. You can verify your answer by writing
the code (10 pts) 	

	

SOLUTION:	
 	
 	

 static void removeEveryOther(LinkedList<String> list) {
 for (Iterator<String> iter = list.iterator(); iter.hasNext(); iter.next()) {
 iter.next();
 iter.remove();
 }
 }

 Note: This does not have to be a list of Strings. It can be a list of any type of elements.

4. Say we want to sort a list of n items. Which of the data structures that we studied could you

insert all n items into and then remove them in order and have the data come out sorted, and
it take O(n log n) total time? Explain your answer. (5 pts)
	

SOLUTION:	
 	
 	

We could use a HashSet. The elements are removed in sorted order and Insertion
and removal takes O(log n) for each of n items.

	

Page 2 of 3	

5. Insert, in this order, the Strings "exam", "two", "tuesday" into a HashSet first, then a TreeSet,
and then print each set (each class has a toString() method). Show the outputs and explain
they are different (4 pts)	

	

SOLUTION:	
 	
 	

[two, tuesday, exam]
[exam, tuesday, two]

The HashSet output is neither sorted, nor in the order it was input, but in the order
that the hashcodes of the inputs appear. The TreeSet output is sorted.

	

6. Complete	
 the	
 Team	
 Preferences	
 for	
 Simulation	
 Project	
 SECTION	
 X	
 survey	
 on	
 ANGEL,	
 where	
 X	
 is	

your	
 section	
 number.	
 The	
 survey	
 MUST	
 be	
 completed	
 by	
 this	
 THURSDAY	
 so	
 I	
 can	
 assign	
 you	
 to	
 your	

project	
 teams	
 before	
 next	
 Monday.	
 The	
 survey	
 is	
 accessible	
 following	
 these	
 links	
 on	
 the	
 course	

ANGEL	
 page:	
 Lessons	
 →	
 Miscellaneous	
 →	
 Team	
 Preferences	
 for	
 Simulation	
 Project	
 SECTION	
 X.	

	

SOLUTION:	
 	
 	

	
 Done	
 on	
 ANGEL	

7. Brainstorm	
 3	
 ideas	
 for	
 the	
 Simulation	
 project	
 that	
 interest	
 you.	
 Write	
 them	
 on	
 separate	
 paper	
 and	

bring	
 them	
 to	
 class	
 (6	
 pts)	

 SOLUTION:	
 	
 	

	
 Answers	
 will	
 vary	

8. Finish the recursion exercises you started in class:

a. How often are the Hofstadter Female and Male Sequences in the slides different in the first 50
positions? first 500? first 5,000? first 5,000,000? (10 pts)

i. Write your four answers as comments at the top of the file containing the code you used to
solve this.
SOLUTION:	
 	
 (in	
 Students’	
 repos)	

First	
 50:	
 	
 8	

First	
 500:	
 	
 13	

First	
 5,000:	
 	
 18	

First	
 5,000,000:	
 	
 32	

ii. Commit your work!

Page 3 of 3	

b. Complete the recursive drawSierpinski() method in the SierpinskiRenderer class in the sierpinski
package. This method should render the Sierpiński Triangle as shown in the figure below. The triangle is
rendered by following these steps: (25 pts)

i. Draw a solid equilateral triangle.
ii. In a contrasting color, draw another solid equilateral triangle whose corner points are the

midpoints of the original’s sides.
iii. Repeat this process recursively for each of the three corner triangles. That is, you will need

three recursive calls in your method.
iv. Technically speaking, this process is repeated an infinite number of times to create the true

Sierpiński triangle, but we don’t have that much time. So, stop your recursion when the length
of a side of the triangle becomes shorter than some fixed constant, say 5.

SOLUTION:	
 	
 (in	
 Students’	
 repos)	

