
CSSE221:	 Fundamentals	 of	 Software	 Development	 Honors	

Homework	 6	 Solutions	 	

Programming	 assignment	

Finish	 Markov	 part	 1,	 as	 stated	 in	 the	 specification,	 being	 sure	 you	 have	 checked	 in	 your	 final,	 fully	
documented	 copy	 to	 the	 repository.	

Written	 homework	 to	 do	 before	 week	 6	 (due	 before	 beginning	 of	 class	 next	 Monday).	

As	 usual,	 please	 bring	 hardcopy	 for	 written	 answers	 to	 class	 to	 hand	 in	 on	 Monday.	

1. No	 late	 days	 for	 questions	 3-‐7,	 so	 I	 can	 post	 solutions	 in	 time	 to	 study	 for	 the	 exam.	 However,	 you	
may	 use	 a	 late	 day	 if	 you	 need	 it	 for	 Q8.	
	

2. Make	 sure	 you	 are	 familiar	 with	 the	 material	 in	 the	 reading	 for	 the	 week.	

	

3. Write a method that takes a linked list as an argument and removes every other element from
it. It should mutate the list, so will be a void function. You can verify your answer by writing
the code (10 pts) 	
	
SOLUTION:	 	 	

 static void removeEveryOther(LinkedList<String> list) {
 for (Iterator<String> iter = list.iterator(); iter.hasNext(); iter.next()) {
 iter.next();
 iter.remove();
 }
 }

 Note: This does not have to be a list of Strings. It can be a list of any type of elements.

4. Say we want to sort a list of n items. Which of the data structures that we studied could you

insert all n items into and then remove them in order and have the data come out sorted, and
it take O(n log n) total time? Explain your answer. (5 pts)
	
SOLUTION:	 	 	

We could use a HashSet. The elements are removed in sorted order and Insertion
and removal takes O(log n) for each of n items.

	

Page 2 of 3	

5. Insert, in this order, the Strings "exam", "two", "tuesday" into a HashSet first, then a TreeSet,
and then print each set (each class has a toString() method). Show the outputs and explain
they are different (4 pts)	
	
SOLUTION:	 	 	

[two, tuesday, exam]
[exam, tuesday, two]

The HashSet output is neither sorted, nor in the order it was input, but in the order
that the hashcodes of the inputs appear. The TreeSet output is sorted.

	

6. Complete	 the	 Team	 Preferences	 for	 Simulation	 Project	 SECTION	 X	 survey	 on	 ANGEL,	 where	 X	 is	
your	 section	 number.	 The	 survey	 MUST	 be	 completed	 by	 this	 THURSDAY	 so	 I	 can	 assign	 you	 to	 your	
project	 teams	 before	 next	 Monday.	 The	 survey	 is	 accessible	 following	 these	 links	 on	 the	 course	
ANGEL	 page:	 Lessons	 →	 Miscellaneous	 →	 Team	 Preferences	 for	 Simulation	 Project	 SECTION	 X.	
	
SOLUTION:	 	 	

	 Done	 on	 ANGEL	

7. Brainstorm	 3	 ideas	 for	 the	 Simulation	 project	 that	 interest	 you.	 Write	 them	 on	 separate	 paper	 and	
bring	 them	 to	 class	 (6	 pts)	

 SOLUTION:	 	 	

	 Answers	 will	 vary	

8. Finish the recursion exercises you started in class:

a. How often are the Hofstadter Female and Male Sequences in the slides different in the first 50
positions? first 500? first 5,000? first 5,000,000? (10 pts)

i. Write your four answers as comments at the top of the file containing the code you used to
solve this.
SOLUTION:	 	 (in	 Students’	 repos)	

First	 50:	 	 8	
First	 500:	 	 13	
First	 5,000:	 	 18	
First	 5,000,000:	 	 32	

ii. Commit your work!

Page 3 of 3	

b. Complete the recursive drawSierpinski() method in the SierpinskiRenderer class in the sierpinski
package. This method should render the Sierpiński Triangle as shown in the figure below. The triangle is
rendered by following these steps: (25 pts)

i. Draw a solid equilateral triangle.
ii. In a contrasting color, draw another solid equilateral triangle whose corner points are the

midpoints of the original’s sides.
iii. Repeat this process recursively for each of the three corner triangles. That is, you will need

three recursive calls in your method.
iv. Technically speaking, this process is repeated an infinite number of times to create the true

Sierpiński triangle, but we don’t have that much time. So, stop your recursion when the length
of a side of the triangle becomes shorter than some fixed constant, say 5.

SOLUTION:	 	 (in	 Students’	 repos)	

