
Function Objects and
Comparators
CSSE 221
Fundamentals of Software Development
Honors
Rose-Hulman Institute of Technology

Comparator vs. Comparable
•  Comparable: implemented within the

object you want to compare

•  Comparator: implemented within a class
that compares objects

Comparable
•  If a class implements comparable

interface, then it is required to provide a
compareTo() method

•  When you compare objects, the
compareTo() method returns #<0, 0, or
#>0

For Example
 public class Coin implements Comparable<Coin>
 {

 -Class variables and methods

 public int compareTo(Coin other)
 {

 if(this.getValue()>other.getValue())
 return 1;
 if(this.getValue()<other.getValue())
 return -1;
 return 0;

 }
}

For Example
 public class Coin implements Comparable<Coin>
 {

 -Class variables and methods

 public int compareTo(Coin other)
 {

 return(this.getValue()-other.getValue());
 }
}

Comparator
•  Comparator is used nearly the same as

Comparable, but requires a separate class
that compares two objects passed to the
Compare() method.

Comparator (cont.)
•  The real reason to do this is to use

–  Collections.sort(List<Object>, Comparator<Object>);

–  This is necessary when the objects stored in the list
do not implement Comparable, and there is no way to
make the object implement Comparable.

For Example
public class compareCoins implements Comparator<Coin>
{
 public int compare(Coin a, Coin b)

 {
 return a.getValue()-b.getValue();
 }

}

For Example
Public class CoinTester
{
public static void main(String[]args)

 {
 //create a list of coins.
 Collections.sort(list, new compareCoins());
 }

}

Function Objects
•  These are only used to provide

functionality for a method or library
•  Small class only meant to have one or two

methods, basically an Interface.

Activity Time
•  You are going to compare yourself to

every person… based on height.
•  Tally up your 1’s, 0’s and -1’s.
•  Then Sort yourselves, only based on the

1,0,-1 information.

Demo Time
•  Checkout ComparatorsSection2 from your

SVN public repository
•  Write a Comparator class to sort car.java

•  Write the compareTo() method in
Rainbow.java

Your Turn

