
Searching Algorithms
by Dharmin Shah and Jeff Carter
CSSE 221-02
Fundamentals of Software Development
Honors
Rose-Hulman Institute of Technology

Why Search?
•  To find an element in an list.
•  For example, to find a criminal record, the

FBI searches from a list of criminal records
it has.

•  A car dealer searches for a car from his
inventory list.

Types of Searches
•  There are two types of searches:
1.  Sequential or Linear Search.
2.  Binary Search
•  If an array of elements is not ordered, and

you want to find a particular element, you
use Linear Search.

•  If the array is a sorted one, and you want
to find an element, using Binary Search is
the faster way to search for the element.

Sequential (Linear) Search
•  A sequential search of an array starts at the

beginning (0th position) of the array and
continues until the element that we are
searching for is found, or the element is not in
the array.

•  Each element of the array is visited until the end
of the array or until the element is found.

public class Search implements Comparable<E>{
 public int compareTo(E obj){
 if(this.value == obj.value)
 return 0;
 else if(this.value > obj.value)
 return 1;
 else
 return -1;
 }
 public int LinearSearch(E[] arr, E element){
 for(int i = 0; i< arr.length; i++){
 if(arr[i].compareTo(element)==0)
 return i;
 }
 return -1; }

}

Efficiency of Linear Search

•  The average number of comparisons for linear
search is:

Case Efficiency
Best Case (the item to be searched is the first one) O(1)
Worst Case (the item to be searched is the last one) O(n)
Average O(n)

Sequential (Linear) Search
•  Advantages:
a.  Easy to implement and understand.
b.  The Array need not be ordered (sorted).

•  Disadvantages:
a. Inefficient; its average efficiency is O(n) and the
efficiency for the worst case scenario is O(n).

Binary Search
•  A binary search uses the ‘divide-and-

conquer’ strategy.
•  It looks at the middle element of a sorted

array, and then searches for the left half or
the right half depending on the element being
searched and the order in which the array
was sorted.

•  It will repeat the same process after selecting
the appropriate half, until the element is
found.

Binary Search (array sorted in
increasing order)
public int BinarySearch(E[] arr, E element){

 int left = 0;
 int right = arr.length-1;
 while(left<=right){
 int middle = (left+right)/2;
 if(element.compareTo(arr[middle])>0){
 left = middle+1;
 } else if(element.compareTo(arr[middle])<0) {
 right = middle-1;
 } else if(element.compareTo(arr[middle])==0) {
 return middle;
 }
 }
 return -1;

}

Binary Search (array sorted in
decreasing order)
public int BinarySearch(E[] arr, E element){

 int left = 0;
 int right = arr.length-1;
 while(left<=right){
 int middle = (left+right)/2;
 if(element.compareTo(arr[middle])>0) {
 right = middle-1;
 } else if(element.compareTo(arr[middle])<0) {
 left = middle+1;
 } else if(element.compareTo(arr[middle])==0) {
 return middle;
 }
 }
 return -1;

}

Efficiency Binary Search

32 items
1st try - 16 items
2nd try - 8 items
3rd try - 4 items
4th try - 2 items
5th try - 1 item

250 items
1st try - 125 items
2nd try - 63 items
3rd try - 32 items
4th try - 16 items
5th try - 8 items
6th try - 4 items
7th try - 2 items
8th try – 1 item

512 items
1st try - 256 items
2nd try - 128 items
3rd try - 64 items
4th try - 32 items
5th try - 16 items
6th try - 8 items
7th try - 4 items
8th try - 2 item
9th try - 1 item

11 items
1st try - 6 items
2nd try - 3 items
3rd try - 2 items
4th try - 1 item

•  List of 11 takes 4 tries.
•  List of 32 takes 5 tries.
•  List of 250 takes 8 tries.
•  List of 512 takes 9 tries.

•  8 < 11 < 16 2↑3 <11< 2↑4 
•  2↑5 =32 𝑎𝑛𝑑 2↑9 =512
•  128 < 250 < 256 2↑7 <250< 2↑8 

Efficiency of Binary Search

•  Since,
 8 = 2↑3  𝑙𝑜𝑔↓2  8=3.
•  Therefore, we say that the binary search

algorithm has an efficiency of 𝑙𝑜𝑔↓2  𝑛 time.
•  Thus, the efficiency of binary search is:

 O(log 𝑛)

Efficiency of Binary Search

Binary Search
Advantage Disadvantage
More efficient than linear search. O(log n) efficiency
compared to O(n) efficiency of linear search.

Requires a sorted array.

Demo

