
Sorting Recap and Analysis
CSSE 221
Fundamentals of Software Development
Honors
Rose-Hulman Institute of Technology

Announcements
•  Cycle 2 was due Monday
•  Cycle 3 user stories were due Monday
•  Exam on Thursday is optional

– Programming only, worth 50 points
– Gives more time to focus on project

Searching & sorting are
ubiquitous
•  In the classic book series The Art of

Computer Programming, Donald Knuth
devotes a whole volume (about 700
pages) to sorting and searching.
– Claims that about 70% of all CPU time is

spent on these activities.

•  You need sorting to do fast search

Elementary Sorting Methods
–  Selection sort
–  Insertion sort
–  Merge sort
–  Quicksort
–  Binary tree sort
–  Heapsort
–  Radix sort
–  And lots of others (see Wikipedia)
–  http://www.sorting-algorithms.com/

Goals:
1. How does each work?

2. Best, worst, average time?

3. Extra space requirements?

1. Selection Sort
•  Idea: Select smallest,

then second smallest, …

•  What’s the runtime?
–  Best?
–  Worst?
–  Average?

•  Extra space?

n	
 =	
 a.length;	

for	
 (i	
 =	
 0;	
 i	
 <	
 n;	
 i++)	
 {	

	
 minPos	
 =	
 0;	

	
 //	
 find	
 the	
 smallest	

	
 for	
 (j	
 =	
 i;	
 j	
 <	
 n;	
 j++){	

	
 	
 	
 if	
 (a[j]	
 <	
 a[minPos]){	

	
 	
 minPos	
 =	
 j;	

	
 	
 }	

	
 //	
 move	
 it	
 to	
 the	
 end	

	
 swap(a,	
 i,	
 minPos);	

}	

Interlude: A 5-year old’s
understanding of swapping
•  Courtesy of Matt’s son Caleb…

2. Insertion Sort
•  Idea: Like sorting files

in manila folders

•  What is the runtime?
–  Best?
–  Worst?
–  Average?

•  Extra space?

n	
 =	
 a.length;	

for(i	
 =	
 1;	
 i	
 <	
 n;	
 i++){	

	
 temp	
 =	
 a[i];	

	
 j	
 =	
 i;	

	
 while	
 (j>0	
 &&	
 temp<a[j-­‐1]){

	
 a[j]	
 =	
 a[j-­‐1];	

	
 	
 j-­‐-­‐;	

	
 	
 	
 	
 }	

	
 	
 	
 	
 a[j]	
 =	
 temp;	

}	

	

3. Merge Sort
•  Idea: Recursively split

the array, then merge
sorted sublists

•  What is the runtime?
–  Best?
–  Worst?
–  Average?

•  Extra space?

n	
 =	
 data.size();	

if	
 (n	
 <=	
 1)	
 {	
 return	
 data;	
 }	

int	
 middle	
 =	
 n	
 /	
 2;	

leB	
 =	
 data.subList(0,	
 middle));	

right	
 =	
 data.subList(middle,	
 n);	

//	
 recursively	
 sort	
 each	
 half	

leB	
 =	
 mergeSort(le+);	

right	
 =	
 mergeSort(right);	

//	
 merge	
 sorted	
 lists	

return	
 merge	
 (le(,	
 right);	

4. Quicksort
•  Recursive, like mergesort
•  If length is 0 or 1, then it’s already sorted
•  Otherwise:

– Pick a “pivot”
– Shuffle the items around so all those less than

the pivot are to its left and greater are
to its right

– Recursively sort the two “partitions”

Interesting questions…
•  Arrays.sort:

–  If objects, merge (since stable)
–  If primitives, quick (since faster)
– Cuts over to insertion sort when n <= 7

•  What would a recursive selection sort look
like?

•  How can we re-use sorting methods when we
want to sort by different keys?

Project time
•  In a few minutes…

Videos for upcoming C Unit
•  We start C on Monday
•  We will use an inverted classroom to help

your productivity
– What's that mean?
– One downside for this weekend…
– Where do I get the info?

•  You are free to pair-program the
assignments

•  You can bring headphones to class

Project time
•  Show me what you've done recently:

– Status report on cycle 2 user stories
– Demo your program to me

•  Show me what you are working on next
– Cycle 3 user stories

