
Sorting Recap and Analysis
CSSE 221
Fundamentals of Software Development
Honors
Rose-Hulman Institute of Technology

Announcements
•  Cycle 2 was due Monday
•  Cycle 3 user stories were due Monday
•  Exam on Thursday is optional

– Programming only, worth 50 points
– Gives more time to focus on project

Searching & sorting are
ubiquitous
•  In the classic book series The Art of

Computer Programming, Donald Knuth
devotes a whole volume (about 700
pages) to sorting and searching.
– Claims that about 70% of all CPU time is

spent on these activities.

•  You need sorting to do fast search

Elementary Sorting Methods
–  Selection sort
–  Insertion sort
–  Merge sort
–  Quicksort
–  Binary tree sort
–  Heapsort
–  Radix sort
–  And lots of others (see Wikipedia)
–  http://www.sorting-algorithms.com/

Goals:
1. How does each work?

2. Best, worst, average time?

3. Extra space requirements?

1. Selection Sort
•  Idea: Select smallest,

then second smallest, …

•  What’s the runtime?
–  Best?
–  Worst?
–  Average?

•  Extra space?

n	 =	 a.length;	
for	 (i	 =	 0;	 i	 <	 n;	 i++)	 {	
	 minPos	 =	 0;	
	 //	 find	 the	 smallest	
	 for	 (j	 =	 i;	 j	 <	 n;	 j++){	
	 	 	 if	 (a[j]	 <	 a[minPos]){	
	 	 minPos	 =	 j;	

	 	 }	
	 //	 move	 it	 to	 the	 end	
	 swap(a,	 i,	 minPos);	

}	

Interlude: A 5-year old’s
understanding of swapping
•  Courtesy of Matt’s son Caleb…

2. Insertion Sort
•  Idea: Like sorting files

in manila folders

•  What is the runtime?
–  Best?
–  Worst?
–  Average?

•  Extra space?

n	 =	 a.length;	
for(i	 =	 1;	 i	 <	 n;	 i++){	
	 temp	 =	 a[i];	
	 j	 =	 i;	
	 while	 (j>0	 &&	 temp<a[j-‐1]){

	 a[j]	 =	 a[j-‐1];	
	 	 j-‐-‐;	

	 	 	 	 }	
	 	 	 	 a[j]	 =	 temp;	
}	
	

3. Merge Sort
•  Idea: Recursively split

the array, then merge
sorted sublists

•  What is the runtime?
–  Best?
–  Worst?
–  Average?

•  Extra space?

n	 =	 data.size();	
if	 (n	 <=	 1)	 {	 return	 data;	 }	
int	 middle	 =	 n	 /	 2;	
leB	 =	 data.subList(0,	 middle));	
right	 =	 data.subList(middle,	 n);	
//	 recursively	 sort	 each	 half	
leB	 =	 mergeSort(le+);	
right	 =	 mergeSort(right);	
//	 merge	 sorted	 lists	
return	 merge	 (le(,	 right);	

4. Quicksort
•  Recursive, like mergesort
•  If length is 0 or 1, then it’s already sorted
•  Otherwise:

– Pick a “pivot”
– Shuffle the items around so all those less than

the pivot are to its left and greater are
to its right

– Recursively sort the two “partitions”

Interesting questions…
•  Arrays.sort:

–  If objects, merge (since stable)
–  If primitives, quick (since faster)
– Cuts over to insertion sort when n <= 7

•  What would a recursive selection sort look
like?

•  How can we re-use sorting methods when we
want to sort by different keys?

Project time
•  In a few minutes…

Videos for upcoming C Unit
•  We start C on Monday
•  We will use an inverted classroom to help

your productivity
– What's that mean?
– One downside for this weekend…
– Where do I get the info?

•  You are free to pair-program the
assignments

•  You can bring headphones to class

Project time
•  Show me what you've done recently:

– Status report on cycle 2 user stories
– Demo your program to me

•  Show me what you are working on next
– Cycle 3 user stories

