Function objects and comparators

Charles McAnany

Matthew Mercer

Justin Stone

Functions as objects

// Let f represent an arbitrary function of one
// argument.
A=1[xy, 2]
[x, v, 2]
map(f, A)
[f(x), f(y), f(z)] €= This is awesome.

Hey, | could just use an iterator!

* Yes. Yes you could.
set
l set l set l elem \
] 1 1 i 1 I
l elem l elem \l set l elem \l elem \l elem
g l
l elem _
Iterate over this!

int [] A2 = {1,2,3};
map (Math.sin,R) ;

47 sin cannot be resolved or is not a field

//

o0
N

Demo

Password (requred)

|ﬂmm

Birthday (requirad)
| March ~|[31 || 1981

Human test (required)
Type in the text you see in the box below.

==

Sorry, your text and the image didn't match. Please try again

Read (really!) [2]
I¥ 1 have read and agree to the Terms of Use and Privacy Policy.

Comparators

public class Student [
public double

height,

GPA,

weight,

classRank;

public Student (double h,

double g, double w, double c) {

height = h; GPA = g; weight = w; classRank = c;

}

] Can we sort Student|[]?

compareTo(Student other)
would be meaningless.

sortWithComparators(
Student(], heightComparator);

We could write a sortInTermsOfHeight(Student]])
But that’s a lot of coding, especially if we're to use
an efficient algorithm.

Enter comparators! A comparator is a function* that takes
two arguments, and compares them! For example, a comp-
arator for height would be

double heightComparator (Student s1, Student s52) {
return sl.height-s2.height;

1

But that requires passing a function as an argument.

[1]http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/pictures/turingMachine.gif
[2] http://www.seosmarty.com/impossible-captcha-it-doesnt-really-matter-if-you-are-human-or-
not/

Basic Comparator Code

* Arrays class provides static sort method for
integers, floating-numbers, and objects

int[]a="..";
Arrays.sort(a);

* Objects need to belong to Comparable

public class Coin implements Comparable {
public int compareTo(Object otherObject) {
Coin other = (Coin) otherObject;
if (value < other.value) return -1;
if (value == other.value) return 0;
return 1;

Basic Comparator Code

* Once your class implements Comparable, you
can pass an array of the objects to the

Arrays.sort() method

— Coin[] coins = new Coin[n];

— Arrays.sort(coins);

* Use sort from Collections class for array lists

— ArrayList<Coin> coins = new ArrayList<Coin>;

— Collections.sort(coins);

Rules of Comparators

* Total ordering relationship

— Antisymmetric:
* If a.compareTo(b) <=0, then b.compareTo(a) >=0

— Reflexive:
e a.compareTo(a) =0
— Transitive:

 If a.compareTo(b) <=0 and b.compareTo(c) <=0, then
a.compareTo(c) <=0

Common Errors

* If (a.compareTo(b) ==-1) // Wrong
 If (a.compareTo(b) <0) // Right

Parameterized Comparable Interface

 Comparable interface is now a parameterized
type

public class Coin implements Comparable<Coin> {
... /* earlier compareTo() code */

}

* No casting object parameters

Demo

