
Merge Sort & Fork-Join
Parallelism
Edna Jones & Tayler Burns
CSSE 221 Section 2
Fundamentals of Software Development Honors
Rose-Hulman Institute of Technology

Merge Sort
•  Sorts usually from smallest to largest
•  Why sort a list? Sorted lists can use

certain search algorithms.
•  Divides array in half recursively
•  Call merge sort on each half of the array
•  Then merges the sorted halves into a

sorted array
•  Has O(n log n) efficiency

Dividing the Array
Comparing

During
Merging

Video
•  http://www.youtube.com/watch?

v=2sLHJpMyNXA&feature=player_detailp
age

Coding Merge Sort

Classes Used in Fork-Join
Parallelism
•  ForkJoinPool: use exactly one of these to run all your

fork-join tasks in the whole program
–  It is the job of the pool to take all the tasks that can be done

in parallel and actually use the available processors
effectively.

•  RecursiveTask<V>: you run an object of type a
subclass of this in a pool and have it return a result

•  RecursiveAction: just like RecursiveTask except it does
not return a result

•  ForkJoinTask<V>: superclass of RecursiveTask<V>
and RecursiveAction. fork() and join() are methods
defined in this class. It is the class with most of the
useful javadoc documentation, in case you want to learn
about additional methods.

Using Fork-Join Parallelism
•  Create a ForkJoinPool

– ForkJoinPool fjPool = new ForkJoinPool();
•  Call the invoke() method on the

ForkJoinPool passing an object of type
RecursiveTask<V>
–  fjPool.invoke(new RecursiveTask<V>(Object o));
– This causes the ForkJoinPool to call the

compute() method of the RecursiveTask.
•  The compute() method

Using Fork-Join Parallelism
•  Call fork() method on a RecursiveTask. This

starts parallel computation – fork() itself
returns quickly, but more computation is now
going on.

•  When you need the answer, you call the
join() method on the object you called fork()
on. The join method will get you the answer
from compute() that was figured out by fork().
If it is not ready yet, then join will block (i.e.,
not return) until it is ready.

Example

Things to Watch Out for
•  Don’t call fork twice for only two subproblems

and then call join twice. This is much less
efficient than just calling compute() and has
no benefit since you are creating more
parallel tasks than is helpful.

•  The order in which you call fork(), compute(),
and join() matters
–  If you call the methods in the order fork(), join(),

compute() or compute(), fork(), join(), the code
won’t run in parallel.

Sources
•  Horstmann, Cay. Big Java.
•  “Beginner's Introduction to Java's ForkJoin

Framework.” <http://
www.cs.washington.edu/homes/djg/
teachingMaterials/
grossmanSPAC_forkJoinFramework.html>

•  http://www.mycstutorials.com/articles/
sorting/mergesort

