
Mergesort
CSSE 221
Fundamentals of Software Development Honors
Rose-Hulman Institute of Technology
Presentation by Cameron Spry and AJ Piergiovanni

Fastest Sorts (All O(n log n))
•  Quicksort
•  -> Mergesort <-
•  Timsort
•  Heapsort
•  Introsort

Basics of Mergesort
•  A “divide and conquer” recursive algorithm

for sorting
•  Splits the list to be sorted into smaller,

easier to sort lists
•  Performance of O(n log n), so it’s fast
•  Not typically an in-place sort
•  The default sort in Perl and some

implementations of Java

Mergesort Algorithm
•  If the list is length 0 or 1, the list is sorted
•  Divide the list into 2 lists, half the size
•  Recursively apply Mergesort by splitting

the lists then merging them together
•  Merge the lists together to form 1 list

Mergesort (Wikipedia Animation)

Pros and Cons
•  Fast
•  Always O(n log n)
•  Can be concurrent
•  It is a stable sort

•  Uses lots of memory
•  Recursive (uses stack

space)

Concurrency
•  Mergesort can be optimized by using

threads
•  When recursively applying the Mergesort,

a new Thread can be created to run each
Mergesort

•  Use fork and join to merge the lists into
one sorted list

•  This helps limit stack overflows because
each thread gets its own stack

Fork and Join
•  Fork runs code on a separate thread

–  It uses multiple cores to make you program fast
– Uses a thread pool
– Creates tasks that are executed by worker

threads
•  Forking works great with recursive functions
•  More efficient that threads for divide-and-

conquer algorithms
•  Only in Java 7, but it can be added to Java 6

by including a .jar

Using Fork
•  To use fork, you must extend the

ForkJoinTask
– Usually as a RecursiveTask or

RecusiveAction
•  RecursiveTask can return a result
•  Recursive action cannot

•  You also need a ForkJoinPool
– The constructor takes a int for cores
–  .invoke(task); starts the process

Fork Join
•  This works great with recursive functions

because for each recursive call, you can
create a new ForkJoinTask to do the work.
– This speeds up the function because it runs

on a separate core
–  It also helps limit Stack Overflow errors
– ForkJoinTasks are like lightweight threads

Using Fork Join
•  In a recursive function, after creating the

tasks, there are 3 functions called
–  task1.fork(); starts task1 on a separate core
–  task2.fork(); starts the second task
–  task2.compute(); can also be used to run

task2
–  task1.join(); waits until task1 is complete to

continue
–  task2.join(); waits until task2 is complete to

continue

More Information about Fork/
Join
•  http://www.oracle.com/technetwork/

articles/java/fork-join-422606.html
•  http://www.ibm.com/developerworks/java/

library/j-jtp11137/index.html
•  http://www.cs.washington.edu/homes/djg/

teachingMaterials/
grossmanSPAC_forkJoinFramework.html
– Dan Grossman’s work has facilitated our

introduction of forkJoin parallelism

