
Capsule group:

Ryne Bell, Michael Gerhardt, Cassandra Cox

What is Animation?

 Animation is quite simply redrawing an

object as its location changes/

 It can be used for more interesting GUIs,

as well as for animating algorithms.

 Animating algorithms can often make them

easier to observe, understand and debug.

Multithreading and Animation
 Multithreading is used to animate multiple objects simultaneously.

// an easy way to create a new animation thread is to use this outline as a method in your
class

public void startAnimation() {

 class AnimationRunnable implements Runnable {

 public void run() {

 try {

 // do whatever animation you’re doing with this thread

 }

 catch (InterruptedException exception) {

 // catch the exception (the thread being

 // interrupted) if you need to do so

 }

 }

 }

 Runnable r = new AnimationRunnable();

 Thread t = new Thread(r);

 t.start();

 }

Animating Algorithms

 In order to animate an
algorithm, you must first decide
what information you want to
display.

 A basic algorithm animation is
of a Selection Sort in action.

 The animation could, for
example, show bars of the
length of each element, and
step slowly through the sort,
Showing them move.

Animating Algorithms cont.

 In order to show the user/person

debugging the algorithm what is going

on, the algorithm must step slowly

through its steps.

// an easy way to do this:

// steps is used to cause the delay to be proportional to the number of steps involved

Public void pause(int steps) throws Interrupted exception{

 component.repaint();

 Thread.sleep(steps*Delay);

}

Animating Algorithms cont.

 The StartAnimation method in an

animated algorithm must both draw the

visual representation of the algoritm,

and step through it.

public void run(){

try{

// step through the algorithm however many steps, then animate it

}

catch (InterruptedException exception) {

 }

pause(2); // pause between steps in the algorithm to allow the user to observe it

}

