Insertion and
Selection Sort

Section 2
John Kulczak and Alex Andrews




Sorting

Sorts from smallest to largest.

Must be comparable objects (compareTo() method must
be implemented).

Selection and Insertion sort are inefficient for larger lists,
but useful for smaller lists.

Why sort a list? Sorted lists can use certain search
algorithms.




Selection Sort

Searches the unsorted part of the list for the smallest
element.

Swaps the smallest element from the unsorted list with
the first element in the unsorted list.

Repeats this process for next element, all the way until
the last element.

O(n?) efficiency.




Selection Sort Example

Green = Sorted part of the list

8 5127 unsorted list
158 2 7 after 15t pass
1 2 85 7 after 2"9 pass
1 25 8 7 after 379 pass

12578 after 4t pass




Insertion Sort

* Divides the list into two parts, a sorted list followed by an
unsorted list. (At the start, the first element in the list is
considered sorted with respect to itself).

* Moves elements from the unsorted list into the sorted list,
one at a time.

* Inserts elements by shifting elements of higher value to the
right.

* Efficiency ranges from O(n?) to O(n), depending on how sorted
the list is beforehand.

* Worst case for insertion sort efficiency would be an already
sorted list, but in reverse order.




Insertion Sort Example

Green = Sorted part of the list
Underlined = next element to be inserted

8 2

5 8

=

I

unsorted list
after 15t pass
after 2"d pass
after 3" pass

after 4t pass




