Recursion

CSSE 221
Fundamentals of Software Development Honors
Rose-Hulman Institute of Technology

Announcements

- Exam Tuesday
- Prepare for Monday's simulation time: - Partner presentation survey due today
- Bring 3 ideas about potential projects to share with your team
- We think Markov Chains are used in the SwiftKey smartphone app.
- http://www.swiftkey.net/

If you don't have a base case for your recursion, it can become a nightmare!

QOSEFUUMAN

Recursion

- What is a recursive method?
- A method that calls itself, but on a simpler problem
- Used for any situation where parts of a whole look like mini versions of the whole:
- Folders within folders on computers
- Some computer languages (Scheme)
- Trees in general
- Cons: Takes more space (but time can be roughly equal; it depends)
- Pros: Can gives code that's very easy to understand

Recursion template

- For a method that calculates a value: int foo(int n) \{
if $(\mathrm{n}<=1)$ \{ //Base case return (some easy expression);
\} else \{
return (some expr. with foo(n-1);
//not just foo(n)) so progress
\}
Of course, you can write void recursive methods, and ones that recurse on values other than n -1

Four Rules of Recursion

1. Base case

- You need at least 1 base case that can be solved without recursing

2. Progress

- You can only recurse on a simpler problem

3. "You gotta believe"

- Otherwise, you'll try to solve the problem both recursively and non-recursively. This is bad.

4. Compound interest rule

- Efficiency: Don't duplicate work by solving the same instance of the problem in separate recursive calls
- Later

Demo

Let's watch in the debugger

- Checkout Recursion project
- Navigate to memoization package.
- Let's look at stack trace for Fibonacci.fib()
-What if missing base case?

What else can we do recursively?

- gcd(a,b): //assumes a > b
- if a is a multiple of b, return b
- Otherwise, return gcd(b, a \% b) (guaranteed to be smaller)
- myPow(x, a)
- Program this now
- Contest: Which table can write a version with the shallowest call stack?

Break

YOUR PARTY ENTERS THE TAVERN.

I GATHER EVERYONE AROUND A TABLE. I HAVE THE ELVES START WHITTLING DICE AND GET OUT SOME PARCHMENT FOR CHARACTER SHEETS.

Memoization

- What is I wish to speedup the calculation of fib(n)?
- Can I do this any faster with recursion?
- What is memoization?
- How can I use memoization to speedup calculation?

Mutual Recursion

- Two or more methods that call each other repeatedly
- For example, Hofstadter Female and Male Sequences

$$
\begin{aligned}
& F(n)= \begin{cases}1 & \text { if } n=0 \\
n-M(F(n-1)) & \text { if } n>0\end{cases} \\
& M(n)= \begin{cases}0 & \text { if } n=0 \\
n-F(M(n-1)) & \text { if } n>0\end{cases}
\end{aligned}
$$

- Burning Questions for you to figure out now by coding:
- How often are the sequences different in the first 50 positions? first 500? first 5,000? first 5,000,000?
- This is part of the homework

Two Mirrors

If you actually do this, what really happens is Douglas Hofstadter appears and talks to you for eight hours about strange loops.

A graphical exercise on recursion

- Sierpinski's Triangle...
- http://www. pha.jhu.edu/~|db/seminar/
- See starting code in the repository.
- How can you use recursion to solve this problem?
- Discuss with a partner
- You may pair-program this if you want
- Fun extensions:
- Add color
- Play with non-equilateral triangles

