
Markov
CSSE 221
Fundamentals of Software Development
Honors
Rose-Hulman Institute of Technology

Announcements
•  Team evals due now (or last night)
•  Simulation project starts Monday

–  An educational simulation or animation of some
process

–  Must include a GUI
–  Must include multithreading

This week: Markov
•  Monday:

– Stacks and Queues
– Sets and Maps

•  Tuesday:
–  Introduction to Markov, a cool statistical text

program with lots of data structures
– File I/O

•  Thursday:
– Recursion

Markov Chain Progam
•  Input: a text file

 the skunk jumped over the stump
 the stump jumped over the skunk
 the skunk said the stump stunk
 and the stump said the skunk stunk

•  Output: a randomly generated list of words
that is “like” the original input in a well-defined
way

•  Gather statistics on word patterns by
building an appropriate data structure

•  Use the data structure to generate random
text that follows the discovered patterns

Markov Chain Process

•  Input: a text file
the skunk jumped over the stump
the stump jumped over the skunk
the skunk said the stump stunk
and the stump said the skunk stunk

Markov Example, n = 1
Prefix Suffixes
NONWORD the
the skunk (4), stump

(4)
skunk jumped, said,

stunk, the
jumped over (2)
over the (2)
stump jumped, said,

stunk, the
said the (2)
stunk and,

NONWORD
and the

•  Input: a text file
the skunk jumped over the stump
the stump jumped over the skunk
the skunk said the stump stunk
and the stump said the skunk stunk

Markov Example, n = 2
Prefix Suffixes
NW NW the
NW the skunk
the skunk jumped, said,

the, stunk
skunk jumped over

jumped over the

over the stump, skunk

the stump the, jumped,
stunk, said

…

•  n=1:
the skunk the skunk
jumped over the
skunk stunk

the skunk stunk

Output
•  n=2:
the skunk said the
stump stunk and the
stump jumped over
the skunk jumped
over the skunk stunk

•  Note: it’s also
possible to hit the
max before you hit
the last nonword.

•  For the prefixes?

•  For the set of suffixes?

•  To relate them?

Markov Data structures
Prefix Suffixes
NW NW the
NW the skunk
the skunk jumped, said,

the, stunk
skunk jumped over

jumped over the

over the stump, skunk

the stump the, jumped,
stunk, said

…

Fixed-Length Queue and Markov
•  FixedLengthQueue: a specialized data

structure, useful for Markov problem
– Check out FixedLengthQueue from your new

Markov repo

•  Work to implement it this class
– Solution is in Markov if you get stuck

•  When you finish, read the (long) Markov
description

•  We will only do milestone 1 (so no text
justification)

Work time, and hints

Fixed length queue (FLQ)
•  Example to the left shows the queue

as elements are added
–  We’ll only add, no remove

•  What do you need to implement this?
–  Array whose length is the capacity of

the FLQ
–  Index at which to add the next

element to the FLQ
•  This index increases by 1 as you add

elements, but “wraps” back to 0 when it
reaches the capacity of the FLQ

–  Current size of the FLQ
•  As opposed to the capacity of the FLQ

Arrow shows the point at which to add data next

a

a b

a b c

a b c d

a b c d e

f b c d e

Generating
sentences by a
Markov chain

Input:
Blessed are the poor for
they will be Blessed are the
peacemakers for they will
find Blessed are meek for
they will be Blessed are

 Inspired by Matthew 5:3-9

Prefix (n = 2) Suffix
NONWORD NONWORD Blessed
NONWORD Blessed are
Blessed are the the meek NONWORD
are the poor peacemakers
the poor for
poor for they
for they will will will
they will be find
will be Blessed Blessed
be Blessed are are
the peacemakers for
peacemakers for they
will find Blessed
find Blessed are

are meek for
meek for they
are NONWORD NONWORD

To generate a new phrase,
start with NONWORD NONWORD
and “follow the chain”, but
choose at random from
eligible suffixes

What data
structures to
use?

Prefix (n = 2) Suffix
NONWORD NONWORD Blessed
NONWORD Blessed are
Blessed are the the meek NONWORD
are the poor peacemakers
the poor for
poor for they
for they will will will
they will be find
will be Blessed Blessed
be Blessed are are
the peacemakers for
peacemakers for they
will find Blessed
find Blessed are

are meek for
meek for they
are NONWORD NONWORD

Use a Fixed-Length Queue
whose length is n

Use a MultiSet
•  Stores each word with its
multiplicity
•  Has:

•  size()
•  findKth(int k)

•  To “pick at random” from a
MultiSet, generate a random
number, k, between 0 and
size(), then call
findKth(k) to get the
random word

The Markov Map
Wk-3 Wk-4 Wk-2 Wk-1 wk wk+1

•  When building the map: the
word that follows the given
prefix
•  When generating from the
map: random but according to
the data distribution

Implement as a
Fixed-Length Queue
whose length is n

This mapping is what we want to
generate new data from the existing
data, using a Markov Chain

Implement by choosing
at random from the
mapped MultiSet

Implement the mapping as a
HashMap<String, MultiSet>
where the String is the
concatenation of the words in the
Fixed-Length Queue, and the
MultiSet is the set of words that
follow that String in the input Do you see why

these are good data
structures for this
problem?

Building the Markov Map
Wk-4 Wk-3 Wk-2 Wk-1 Wk

Wk-3 Wk-4 Wk-2 Wk-1 wk

FLQ:

String
(key):

Previous
MultiSet

Previous MultiSet
plus wk+1

toString

get the MultiSet from the
HashMap<String, MultiSet>,
 using this key

If the MultiSet is null, construct the
MultiSet and put it into the HashMap.
In any case, add wk+1 to the MultiSet

add wk+1
(the next
word in the
input file) to
the FLQ

The loop ends
when the input
file is empty.
Follow the
loop by putting
NONWORD
as wk+1 n
times.

Initially, the FLQ
contains NONWORD
at all indices and wk

+1 is the first word of
the input

Generating from the
Markov Map

Wk-4 Wk-3 Wk-2 Wk-1 Wk

Wk-3 Wk-4 Wk-2 Wk-1 wk

FLQ:

String
(key):

MultiSet

toString

get the MultiSet from the
HashMap<String, MultiSet>,
 using this key

Choose wk+1 randomly from
the MultiSet, using
findKth(random number
between 0 and size of the
MultiSet)

add wk+1
(the
generated
word) to
the FLQ

The loop ends
when
NONWORD is
generated or
you get to the
maximum
number of
words.

Initially, the FLQ
contains NONWORD
at all indices

Wk+1

•  Scanner scanner =
 new Scanner(
 new File (

this.pathToInputFile)));

while (scanner.hasNext()) {
 String word = scanner.next();
 ...
}

Reading words from a file

