
Lists and Iterators
CSSE 221
Fundamentals of Software Development
Honors
Rose-Hulman Institute of Technology

Announcements
•  Should be making progress on

VectorGraphics.
– Aim to finish UML + user stories before

Thursday so you can get a jump on the coding
•  Questions on Exam 1?

Data Structures
Understanding the engineering trade-offs when storing data

Data Structures and the Java
Collections Framework
•  Three aspects to understand:

– Specification (methods in the interface)
–  Implementation (sometimes several alternate

implementations)
– Applications (when I should use it)

Data Structures
•  Efficient ways to store data based on how

we’ll use it

•  So far we’ve seen ArrayLists
– Fast addition to end of list
– Fast access to any existing position
– Slow inserts to and deletes from middle of list
–  If sorted, can find in O(log n) time

Another List Data Structure
•  What if we have to add/remove data from

a list frequently?
•  A LinkedList supports this:

– Fast insertion and removal of elements
•  Once we know where they go

– Slow access to arbitrary elements
– Sketch one now

Insertion, per Wikipedia

“random access”

Another List Data Structure
•  What if we have to add/remove data from a list

frequently?
•  A LinkedList supports this:

–  Fast insertion and removal of elements
•  Once we know where they go

–  Slow access to arbitrary elements

data

data

data

data

data null

Insertion, per Wikipedia

“random access”

LinkedList implementation of the
List Interface
•  Stores items (non-contiguously) in nodes; each

contains a reference to the next node.
•  Lookup by index is linear time (worst, average).
•  Insertion or removal is constant time once we have

found the location.
–  Insert A4 after A1.

•  Even if Comparable list items are kept in sorted order,
finding an item still takes linear time.

•  Implementing these is fun, will defer until later

LinkedList<E> methods
•  Manipulating the ends of a list is quick:

– void addFirst(E e) [Stacks call it push()]
– void addLast(E e) [Queues call it offer()]
– E getFirst() [peek() or peekFirst]
– E getLast() [peekLast()]
– E removeFirst() [pop() in Stacks, poll() in

Queues]
– E removeLast() [pollLast()]

LinkedList<E> iterator
•  What if you want to access the rest of the

list?
•  Iterator<E> iterator()

– An iterator<E> has methods:
•  boolean hasNext()
•  E next()
•  E remove()

What should remove() remove?

Accessing the Middle of a
LinkedList

n  iterator() is what is called a factory
method: it returns a new concrete
iterator, but using an interface type.

An Insider’s View
Enhanced For Loop
•  for (String s : list) {

 // do something
}

What Compiler Generates
•  Iterator<String> iter =

 list.iterator();

while (iter.hasNext()) {

•  String s = iter.next();
•  // do something
•  }

Demo
How to use linked lists and iterators

Abstract Data Types
More with big-Oh

Abstract Data Types (ADTs)
•  Boil down data types (e.g., lists) to their

essential operations

•  Choosing a data structure for a project
then becomes:
–  Identify the operations needed
–  Identify the abstract data type that most

efficiently supports those operations

Arrays
•  Must declare

its size when
constructed.

•  Access items
by index

Implementation (handled
by the compiler): We have an
array of N items, each b bytes
in size.

Let L be the address of the
beginning of the array.

What is involved in finding the
address of a[i]?

What is the Big-oh time
required for an array-element
lookup?

What about lookup in a 2D
array of n rows and m
columns?

a[0]

a[1]

a[2]

a[i]

a[n-2]

a[n-1]

L a

ArrayLists use arrays internally
•  So O(1) random access

•  We said Array Lists have
– Fast addition to end of list
– Slow inserts to and deletes from middle of list

•  Big-Oh runtimes of each?

Runtimes of LinkedList methods
•  void addFirst(E element)
•  E getFirst()
•  E removeFirst()

•  E get(int k)

•  To access the rest of the list: Iterator<E> iterator()
–  boolean hasNext()
–  E next()
–  E remove()

Operations
Provided

Array List
Efficiency

Linked List
Efficiency

Random access O(1) O(n)
Add/remove item O(n) O(1)

Summary

Which list to use?
Operation ArrayList LinkedList

Random access

Accessing front or
rear

Insert in front

Insert in middle

Insert in back

Which list to use?
Operation ArrayList LinkedList

Random access O(1) O(n)

Accessing front or
rear

O(1) O(1)

Insert in front O(n) O(1)

Insert in middle O(n) O(1) once found

Insert in back O(1) average
(O(n) resizing occurs
rarely)

O(1)

Common ADTs
•  Array List
•  Linked List
•  Stack
•  Queue
•  Set
•  Map

•  Look at the Collection
interface now.

Implementations for all of these
are provided by the Java
Collections Framework in the
java.util package.

A longer list
•  Array (1D, 2D, …)
•  List

–  ArrayList
–  LinkedList

•  Stack
•  Queue
•  Set
•  MultiSet
•  Map (a.k.a. table, dictionary)

–  HashMap
–  TreeMap

•  PriorityQueue
•  Tree
•  Graph
•  Network

What is "special" about
each data type?
What is each used for?
What can you say about
time required for:
adding an element?
removing an element?
finding an element?

You will know these, inside
and out, by the end of
CSSE230.

