
Object-Oriented Design
VectorGraphics
CSSE 221
Fundamentals of Software Development
Honors
Rose-Hulman Institute of Technology

Announcements
•  Turn in HW4 and Fifteen UML now
•  Exam 1 returned

– Solution posted outside my office
– Opportunity for questions tomorrow

•  Capsules round 1 returned
– Again, great work researching!

•  Start capsules round 2 tomorrow

Schedule
•  OO software

development in Java.
•  18 chapters in text!

–  Ch. 1-16.4, 18, 20
–  Only 6 more left…

•  Lots of programming,
including:
–  Each week’ structured

around a prog. assignment
–  1 bigger team project

•  Researching and
presenting course
material to classmates

•  Intro to C

Topic Project Indep
1 Interfaces BigRational

2 Inher & Poly BallWorlds Research

3 GUI Fifteen Research

4 Lists VectorGraphics Demo

5 Data Structs Markov Demo

6 Simulation Simulation

7 Sorting Simulation Present

8 Searching Simulation Present

9 C Basics C Projects

10 Linked Lists Linked Lists

This week: VectorGraphics
•  Monday:

– More about software design and planning
– Project workday

•  Tuesday:
– Lists and Iterators (capsule)
– Review big-Oh

•  Thursday:
– Threads (capsule)
– Project workday

Vector Graphics Assignment
A team project to create a scalable graphics program.

http://www.rose-hulman.edu/class/csse/binaries/VideoDemos/
VectorGraphics220.mov

•  Now:
– Read the specification
– Sketch out some screen layouts

•  Design (CRC cards and UML) due
Thursday

•  Code due Monday
•  In ~15 minutes

– How to create CRC cards
– Review of UML

Work time today

Object-Oriented Design
A practical technique

Object-Oriented Design
•  We won’t use full-scale, formal

methodologies
– Those are in later SE courses

•  CRC cards à UML class diagram
•  Like any design technique,

the key to success is practice

1. Discover classes based on
requirements

•  Come from nouns
in the problem description

2. Determine responsibilities
of each class

•  Come from verbs
associated with the classes

3. Describe relationships between
classes:
 is-a, has-a

Key Steps in Our Design Process
May…
Represent single concepts

Circle, BigRational

Represent visual elements of
the project

ColoredPanel,
GameButton

Be abstractions of real-life
entities

BankAccount,
TicTacToeBoard

Be actors
Scanner

Be utilities
Math

1.  Pick a responsibility of the program
2.  Pick a class to carry out that responsibility

–  Add that responsibility to the class’s card
3.  Can that class carry out the responsibility by itself?

–  Yes à Return to step 1
–  No à

•  Decide which classes should help
•  List them as collaborators on the first card
•  Add additional responsibilities to the collaborators’ cards

CRC Card
Technique Class

name

Collaborators

Responsibilities

•  Spread the cards out on a table
– Or sticky notes on a whiteboard instead of cards

•  Use a “token” to keep your place
– A quarter or a magnet

•  Focus on high-level responsibilities
– Some say < 3 per card

•  Keep it informal
– Rewrite cards if they get to sloppy
– Tear up mistakes
– Shuffle cards around to keep “friends” together

CRC Card Tips

1.  Pick a responsibility
of the program

2.  Pick a class to carry out
that responsibility

–  Add that responsibility to the class’s
card

3.  Can that class carry out the
responsibility by itself?

–  Yes à Return to step 1
–  No à

•  Decide which classes
should help

•  List them as collaborators
on the first card

•  Add additional responsibilities
to the collaborators’ cards

Make CRC cards for your
VectorGraphics project

}  High cohesion
}  Low coupling
}  Immutable where practical
◦  Document where not

}  Inheritance for code reuse
}  Interfaces to allow others

to interact with your code

•  Classes stay classes
•  Responsibilities become properties

(methods)
•  If attributes (fields) are obvious, add them

– Who stores the list of shapes?
•  Collaborators are usually has-a

relationships
•  If is-a relationships are obvious, add them

Convert your CRC Cards to a
UML class diagram

Summary of UML Class Diagram Arrows

