
Event Listeners and Shapes
CSSE 221
Fundamentals of Software Development
Honors
Rose-Hulman Institute of Technology

Announcements
•  HW3 solution posted
•  Questions on Fifteen or GUIs?
•  Please show me your Fifteen UML at your

earliest convenience (for example, bring it
to Thursday's exam)

How to do a capsule?
Round 2: +Demo and Activity
•  I still lecture (15-20 min).

–  You still create a summary and quiz.
•  Now, you create the demonstration.

–  Code that shows a concept.
–  How will you know if your classmates are understanding it?

•  Now, you create a hands-on activity for the class,
like?
–  Start the demo code together (like SwingDemo)
–  Have them extend the demo code (like SalariedEmployee)
–  Do a kinesthetic activity (like having the class act out a sort

method)
–  Use your creativity!

More about the Demo/Activity
•  Total time for both: ~25 minutes
•  Integrate your quiz with your demo/activity:

–  2-3 questions should relate to them.
•  Roles of Teammates:

1.  Demo Driver: explains the code and adds any
live code

2.  Roving Expert: checks if any students are
having difficulties, asks if they need help

3.  Questioner: chooses students to ask the
questions on the quiz, asks them, and provides
encouragement or corrective feedback as
appropriate.

Capsule Deliverables
•  48 hours in advance:

– Email me the quiz, key, and summary to me
(as before) and a short script of the demo/
activity so I can anticipate what you'll do.

– Commit your demo to the
csse221-201210-public repo

•  Include your section number (1 or 2) in the project
name

–  I am most available on Monday mornings,
Weds and Fridays if you have questions

•  Rubric linked to in schedule.

This week: Fifteen assignment
•  Monday:

–  Fifteen specification
–  GUIs using Java’s Swing library
–  Intro to UML as a design tool

•  Tuesday:
–  EventListeners: responding to user input
–  Shape classes

•  Thursday:
–  Anonymous listeners
–  Exam 1

Exam 1
•  Covers through end of week 2 (array lists)
•  Thursday evening (~ 2 hours)
•  Short written portion: closed-book
•  Programming portion: open-book, 221

website (including summaries), Eclipse
workspace
– You may reference any course materials or

any code that you did solo or with a partner

“Fifteen”
Arrays (especially
2D)
Creating GUIs
using Swing
Responding to
mouse clicks

Events and listeners
•  An event is an action taken by the user.

For example:
–  Mouse pressed, mouse released, mouse moved,

mouse clicked, button clicked, key pressed, menu
item selected, slider moved…

•  Event listeners are code we write that executes
when a certain event occurs, taking appropriate
action
–  We do this by implementing the corresponding

interface.
•  We need to add listeners:

–  button.addActionListener(new ClickListener());
Event source Event responder

public	 class	 ExampleBu/on	 extends	 JBu/on	 implements	 Ac6onListener	 {	
	 	 	 	 private	 Bu/onAndMouseFrame	 frame;	
	 	 	 	 public	 ExampleBu/on(Bu/onAndMouseFrame	 frame)	 {	
	 	 	 	 	 	 	 	 this.frame	 =	 frame;	
	 	 	 	 	 	 	 	 this.setText("Grow");	
	 	 	 	 	 	 	 	 this.addAc6onListener(this);	
	 	 	 	 }	
	
	
	 	 	 	 @Override	
	 	 	 	 public	 void	 ac6onPerformed(Ac6onEvent	 bu/onEvent)	 {	
	 	 	 	 	 	 	 	 this.frame.grow();	
	 	 	 	 }	
}	
	

JButton example

1. JButton says that it
will respond to its own
button presses

2. Responder (this
JButton) declares that it
implements ActionListener

3. Responder (this JButton) implements the
required actionPerformed method, that says
what to do when the JButton is pressed

4. A JButton often refers to one or more other objects (here,
the ButtonAndMouseFrame) that it stores in a field. Need a
setFrame(frame) method or pass it in the constructor

Another example: Button in a
Panel
•  Button is the event source
•  Panel has to respond to the event and therefore must listen for events.

public TopPanel extends JPanel implements ActionListener {
 private JButton changeColor;
 …
 public TopPanel(){
 this.changeColor = new JButton(“Click to change color”);
 this.changeColor.addActionListener(this); //Add the listener to the source
 this.add(changeColor);
 }

 public void actionPerformed(ActionEvent e){
 //Change the background color of the panel
 }
}

Listener interfaces
•  MouseListener

–  Click, enter, etc.
•  MouseMotionListener

–  Move and drag
•  ActionListener

–  Button presses
•  KeyboardListener
•  ChangeListener

–  Sliders and where we only care about change
•  See the API spec for which methods you need to

write

•  Question: do I have to write a whole
separate class in its own file, just for an
actionPerformed method?

•  No! You could use an anonymous listener
– Simpler code, easier access to variables

Nested classes
•  You can define a class inside another class

–  This is called a nested class
–  It has access to the outer class’ fields and methods
–  Useful if the inside class is a “helper class” of interest

only to the outside class
•  You can define a class and construct an instance

of it inside a method
–  This is called a local inner class
–  Useful if the class is small and the object refers to

variables in the outside class
•  You can even make the inside class anonymous.

–  This is called an anonymous inner class
This nomenclature is not universal. See
http://blogs.oracle.com/darcy/entry/nested_inner_member_and_top
for more than you could possibly want to know about this subject

Back to SwingDemo
•  Next stages:

– Pressing a button changes the panel color
– Pressing ENTER in textField at the top of the

screen changes the panel back to red
•  Draw the UML for all classes so far

– Add the listeners.
•  What other connections do I need?

•  Code

Mouse Adapter class
•  OK to leave most of the 5 MouseListener

methods empty.
•  Alternative is to extend MouseAdapter,

then only override the 1-2 you need

Shapes

The Shape interface
•  Methods:

– contains()
–  intersects()
– getBounds()
– getBounds2D()
– getPathIterator()

Who implements Shape?
new Ellipse2D.Double(double x, double y,

 double w, double h)
new Line2D.Double(Point2D p1, Point2D p2)
new Arc2D.Double(double x, double y,

 double w, double h,
 double start, double extent,
 int type)

•  See the javadoc for the Shape interface!
•  Point2D.Double does not implement Shape

Back to Demo
•  Create an arbitrary polygon
•  If the user moves the mouse within it, then

print, "Got me!" to the console.
•  Can you do this by yourself?

Work on Fifteen Spec now
•  You need to do 2 things before you start

coding:
– Show us your UML
– Show us your user stories

UML ideas
•  List of components
•  For each component

– Extends a class?
–  Implements interfaces?
– Creates instances of other components?
– Has instances of other components?

•  For which objects can I use the default Java
version and which do I need to extend?

•  Frames, panels: extend
•  Text boxes: use Java’s
•  Buttons: it depends

