
Big Oh and Unit Testing
CSSE 221
Fundamentals of Software Development
Honors
Rose-Hulman Institute of Technology

Announcements
•  Please commit your BigRational code as you go
•  Roll call again
•  Lab hours Sunday – Thursday, 7:00 – 9:00 pm
•  Don’t need to bring book to class if you are familiar

with the reading for that day and don’t need to
reference it in class.

•  Any questions?
–  Course mechanics? Syllabus? Angel?
–  BigRational?
–  Interfaces?

Capsule Teams: Section 1
•  Research & Summary

–  Inheritance: Bismayer, Savkovich, Venezia
– Polymorphism: Guilford, Memering, Spry
– 1D and 2DArrays and ArrayLists: Goldthorpe,

McCormack, Piergivianni
– GUI using Swing: Juneau, Spry, Taylor
– EventListeners: D’attilio, Katz, Roetker
– Shape classes: Bismayer, Goldthorpe, Venezia

Capsule Teams: Section 2
•  Research & Summary

–  Inheritance: Cox, Nuanes, Uphus
– Polymorphism: Kulczak, Rudich, Stewart
– 1D and 2DArrays and ArrayLists: Andrews,

Burns, Carter
– GUI using Swing: Harbison, Morrison, Nuanes
– EventListeners: Kulczak, Shah, Singer
– Shape classes: Alves, Jones, Morrison

This week: BigRational assignment
•  Yesterday:

– API (Application Programming Interface)
–  Interfaces: writing to a contract

•  Today:
– Unit Testing: searching for logic errors
–  Introduction to efficiency analysis: “big-

Oh”
•  Thursday:

– Exceptions: throwing and catching

Unit Testing
•  What do you think it is?

– Testing parts of your code in isolation before
putting them all together

•  Why is it a good thing?
•  How do I write good test cases?
•  How easy is it to do it in Eclipse?

– Fairly so, with JUnit
•  Let’s see. Open Projects/UnitTesting and

do it together now.

Break
•  http://xkcd.com/489/

Efficiency is important
•  Example?
•  Not all a software

problem
•  Algorithms

–  Inherent complexity
–  Assume time spent is

a function of the size
of the input

–  Big-Oh focuses on the
most important part
of the function!

Now: plot y=18x + 5, y=18x,
y = 5x, y=x2 Which grows

most quickly?

Efficiency is important

y=x2

y = 5x

y=18x y=18x + 5

Also: constant: O(1)

Figure 5.1
Running times for small inputs	

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

(linear looks constant
for small inputs)

Figure 5.2
Running times for moderate inputs	

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Exercise
•  Generate graphs like this from simple code that

you write and time. Our goal is to be able to
complete these statements, given the patterns
you see:
–  a single loop is O(???)
–  a nested loop is O(???)
– …

•  Go to Projects/Runtime Exploration.
•  This mini-homework will be handed in next class.

