
Summery for Capsule 2: Lists and Iterators
LinkedList:

• Data structure like Array or ArrayList
• Comprised of nodes

o Each node has a value
o Each node has a pointer reference to another node, to advance down the list

§ The last node does not have a pointer normally
§ The last node could point to the first node to create a circularly LinkedList

o Each node could have a second pointer, pointing back to the previous node
§ This style of LinkedList is called a Doubly LinkedList

• ListIterator
o Java’s own given interface
o An iterator describes a position anywhere inside a LinkedList
o Has a .next(), which moves down the LinkedList
o Has a .hasNext() to check if there is another node in the LinkedList
o Has a .hasPervious() to check if there is a node before the node which the iterator

is at (useful for doubly LinkedLists)
o Has a .add() which adds a new node after the node which the iterator is at
o Has a .remove() which removes the node and returns its value

• Traversing a LinkedList and accessing an element
o To get any one element of a LinkedList takes O(n) iterations (random access)

§ Need the use of an iterator to keep track of where you are in the
LinkedList

o Whereas to get to any one element in an Array takes only O(1) iterations
• Adding or removing an element

o In ArrayLists it takes O(n) iterations to remove or add an element
o In LinkedList it takes O(1) iterations to remove or add an element
o Removal of a node

§ Use an iterator to find the node which is before the node to be removed
§ Take that node and change its pointer to point to the node which is after

the node to be removed
§ Java should then garbage collect the node which has no pointers pointing

to it
§ Thus removing the node from the LinkedList
§ Could also use the iterator’s .remove() method
§ If removing the first or last node

• Can use LinkedList’s .removeFirst() or .removeLast() methods
o Adding a new node

§ Use an iterator to find the node which is before the location of the new
node

§ Create a new node
• Give this new node’s pointer a value by making it point to the

node after the one the iterator is on
§ With the node the iterator is on, have its pointer value point to the new

node

§ Thus adding a new node to the LinkedList
§ Could also use the iterator’s .add() method
§ If adding something to the beginning or end of the List

• Can use LinkedList’s .addFirst() or .addLast() methods

