
By Brandon Cox,
 Tyler Nuanes,

 and Austin Uphus

Dr. Defoe
CSSE221-2
September14, 2011

Inheritance Hierarchies

� Expresses the relationship between more
general and more specific classes

� Use the is-a relationship
◦ A primate is-a mammal
◦ A human is-a primate

Class Diagrams: The Inverted Tree

Mammal

Primate Ungulate Rodent

Human Ape Horse Goat Rabbit Rat

Root: Most General

Shoots:
More
General
than Leaves

Shoots:
More
Specific
than Roots

Leaves: Most Specific

Superclass vs. Subclass

� Describe relative relationships
◦ A class can be both a superclass and a subclass

�  Superclass: more general

�  Subclass: more specific; inherits methods
and instance variables from the
superclass, but not constructors

Subclasses

� public class X extends Y {…}
◦ X-subclass
◦ Y-superclass

�  Include all the methods from the
superclass, but you should override or
add to them for specialized purposes

Constructors and Methods

�  Say you need to construct a superclass
inside your construction for a subclass
◦ To construct in the superclass:

super(parameter);
� Note: Must be the first statement in the subclass constructor

�  Say you have a doThis(type parameter)
method in your subclass and superclass
◦ To call the superclass:

super.doThis(parameter);

Conclusion: Why Use Inheritance?

�  Saves time: allows code and structural
reuse

� Prevents errors: using previously tested
code leads to greater reliability

� Efficient: avoids redundant code in related
classes

By Brandon Cox,
 Tyler Nuanes,

 and Austin Uphus

Dr. Defoe
CSSE221-2
September14, 2011

Abstract Classes
� Cannot be instantiated, meaning you cannot

create an object for the class
◦  Classes which can be instantiated are called

concrete classes

� Abstract methods contain no code
◦  They exist for organizational purposes

�  public abstract class X {…}
◦ Note: you can declare methods abstract in the

same way

Example
� public abstract class Shape {

 //Description of method
 public abstract double getArea();
 //Description of method
 public abstract double getVolume();

}

◦ Note: when inheriting abstract methods, you
must override them
◦ However, Javadoc comments will remain

intact, saving coders time

Abstract Variables

� You can have a variable with the type of an
abstract class, even though the object to
which it refers cannot be abstract
◦ AbstractClass class = new AbstractClass()
�  WRONG!

◦ AbstractClass class = new ConcreteClass()
�  RIGHT!

Abstract Classes vs. Interfaces

�  Interfaces cannot have instance variables,
concrete methods, or constructors

� Abstract classes can have instance
variables, concrete methods, and
constructors.

Conclusion: Why Use Abstract Classes?

� Prevent errors: force programmers to
override methods
◦ Why? There are no good default methods

�  Saves time: many different classes use the
same methods but implement them
differently

Citations

� http://stason.org/TULARC/software/
object-oriented-programming/1-12-Why-
Use-Inheritance-Object-Oriented-
Technology.html

� Big Java 4th Edition by Cay Horstmann

