
	  

Page	  1	  of	  1	  

CSSE221-‐2	  Honors	  Fund	  of	  Software	   Inheritance	  and	  Abstract	  Classes	  Summary	  

Brandon Cox, Tyler Nuanes, Austin Uphus 
September 14, 2011 

Inheritance and Abstract Classes 

 In order to save time, support reliability, and encourage efficiency, the Java programming 

language allows for inheritance hierarchies and abstract classes. Whereas inheritance empowers 

programmers to establish is-a relationships between more general and more specific classes that share 

common methods, abstract classes restrict some of the features of inheritance in cases where the “parent” 

class should never be instantiated. 

 Recognizing that more specific classes are often related to more general classes by their methods, 

inheritance allows more specific subclasses to override or use existing methods from more general 

superclasses while adding their own constructors, fields, and methods for specialized purposes. Using 

code that has previously been tested cuts down on errors, time, and overall length of code, allowing 

programmers to code more efficiently. Additionally, creating a subclass is simple, only requiring one to 

type extends Superclass in the declaration for the subclass; however, Java does not allow subclasses to 

inherit multiple superclasses at once, so programmers must ensure they use the proper superclass when 

implementing a subclass. 

 In contrast to standard superclasses, abstract classes do not implement all of their methods and 

cannot be instantiated into objects, often because each subclass related to an abstract class implements its 

shared methods in a different way, making it difficult to create general methods uniting all subclasses. By 

forcing programmers to implement some of the methods themselves, abstract classes cut down on error; 

additionally, by creating a common structure, they can save programmers time. Abstract classes and 

methods are declared with the reserved word abstract. Such abstract methods do not contain any code 

and essentially do nothing; they only provide an organizational structure. In addition, abstract classes can 

include instance variables, concrete methods, and concrete constructors, unlike interfaces. 

 Inheritance and abstract classes are most useful because they effectively organize code, 

increasing programmer literacy. Without these tools, code would be more convoluted, and simple 

relationships between classes would be harder to visualize. 


