
William Bismayer, Peter Savkovich, Gregory Venezia CSSE221 
	
  

Capsule Project: Inheritance 
 
What is Inheritance? 

When multiple classes share certain characteristics (e.g. the methods, purpose, fields), it can 
useful to organize them in such a way that minimizes code replication. Inheritance is such a method of 
organizing classes. By creating superstructures (i.e. superclasses, abstract classes, and interfaces), the 
classes that reference them can share common information and draw from the superstructure methods. 

 
What is a Superclass? 

Say you have three classes for constructing different kinds of cars, for instance an SUV, a pickup 
truck, and a sedan. These types of cars all share certain characteristics, but at the same time have their 
own distinctions. In order to keep from creating multiple methods for each class that do roughly the same 
thing, a Superclass may be created to cut down on code replication. For instance, each car’s braking 
‘method’ would likely be very similar (with the possible distinction of anti-lock or standard). To prevent 
having to write such a method three times (and thus increase the likelihood of creating bugs), a ‘car” 
superclass could implement a ‘brake’ method that each of the subclasses that extend it would then inherit. 
Superclasses may be extended by any number of subclasses, but any given subclass may only directly 
extend one Superclass. 

Coding vocabulary: Superclass, subclass, extends, super 
 
What is an Interface? 

When you have several classes that all need similar methods, but are different enough that they 
would not all be able to share the same methods, implementing an Interface allows a programmer to show 
that each class is related. An Interface acts as a sort of ‘contract’ that the classes that implement it must 
fulfill: an Interface does not define methods, but requires that classes that implement it do. Classes can 
implement as many Interfaces as they may need. 

Coding vocabulary: Interface, implements 
 
What is an Abstract Class? 

Abstract classes are very much like Superclasses, but are used when the superstructure cannot 
itself be instantiated. For instance, several shape classes (e.g. circle, triangle, rectangle) may all be 
instantiable, but the Abstract “Shape” class that they would all extend would not make sense as a 
standalone object. Despite this, Abstract Classes still have constructors that their subclasses may use 
themselves. Additionally, Abstract classes can be used like Interfaces in that an Abstract class does not 
have to define its methods. An Abstract class may leave some of its methods undefined, but classes that 
then extend the Abstract class are required to implement those methods as they would be if they were 
implementing an interface. Otherwise, they would be Abstract classes themselves. 

Coding vocabulary: Abstract, extends, super 
 
Overriding methods: 

While the main purpose of Superclasses and Abstract classes is to pass on their methods to their 
subclasses, any given subclass may override a defined method in the superstructure if the need arises. To 
do this, a subclass simply needs to have its own implementation for the given method. This cannot be 
done with an Interface for two reasons: the methods in an Interface must be implemented by classes that 



William Bismayer, Peter Savkovich, Gregory Venezia CSSE221 
	
  

promise to implement it and there is nothing in particular to override since Interfaces do not define how 
its methods work. 


