
CSSE	220:	Object	Design
Part	1	of	Many

Also	Class	Diagrams



Designing	Classes
• Programs	typically	begin	as	abstract	ideas
• These	ideas	form	a	set	of	requirements	(i.e.	what	the	user	wants)
• We	must	take	these	requirements,	and	figure	out	an	approach	for	our	
coding
• Usually	the	approach	is	not	obvious
• So	we	propose	designs,	then	iteratively	refine	them	into	something	that	
might	work	(continued…)



• So	we	propose	designs,	then	iteratively	refine	them	into	something	
that	might	work
• Many	bad	ideas	in	the	process
• We	don’t	want	to	go	through	the	effort	of	implementing	bad	ideas	in	code
• But	we	need	a	way	to	communicate/think	concretely	about	these	half-baked	
program	approaches

• We	need	a	diagram	language!



Tools	of	the	Trade

• Class	Diagrams (UML)
• UML	– Unified	Modeling	Language
• Language	unspecific
• Has	a	lot	of	different	diagrams	it	provides	specifications	for	– but	
the	class	diagram	language	is	the	most	widely	used



A	little	class	diagram	will	get	you	a	long	way

Team

teamAverage
name
students

addGrade(grade)
getTeamAverage()

Student

grades
name

addGrade(grade)

ClassName

Field	names

Method	names

• 3	sections
• Not	the	final	version	of	UML	

we	will	teach,	but	covers	the	
main	points

Example



Lines

Team

teamAverage
name
students

addGrade(grade)
getTeamAverage()

Student

grades
name

addGrade(grade)

ClassName

Field	names

Method	names

A	has	a	B	(field)

Example

ClassName

Field	names

Method	names

*

Note	the	star	means	several…	
usually	a	list	or	collection.

1-2



Summary	of	
UML	Class	Diagram	Arrows

Inheritance
(is-a)

Interface	
Implementation

(is-a)

Association
(has-a-field)

Dependency
(depends-on)

Two-way	Association

Two-Way	Dependency

Cardinality
(one-to-one,	one-to-many)

One-to-many	is	shown	on	left



Principles	of	Design	(for	CSSE220)
• Make	sure	your	design	allows	proper	functionality

• Must	be	able	to	store	required	information (one/many	to	one/many	relationships)
• Must	be	able	to	access	the	required	information to	accomplish	tasks
• Data	should	not	be	duplicated (id/identifiers	are	OK!)

• Structure	design	around	the	data to	be	stored
• Nouns	should	become	classes
• Classes	should	have	intelligent	behaviors (methods)	that	may	operate	on	their	data

• Functionality	should	be	distributed	efficiently
• No	class/part	should	get	too	large
• Each	class	should	have	a	single	responsibility it	accomplishes

• Minimize	dependencies between	objects	when	it	does	not	disrupt	
usability	or	extendability
• Tell	don't	ask
• Don't	have	message	chains

• Don't	duplicate code
• Similar	"chunks"	of	code	should	be	unified	into	functions
• Classes	with	similar	features	should	be	given	common	interfaces
• Classes	with	similar	internals	should	be	simplified	using	inheritance



The	principles	go	from	most	important	to	
least	important.	Today’s	focus:

•Make	sure	your	design	allows	proper	
functionality
•Must	be	able	to	store	required	information (one/many	to	
one/many	relationships)
•Must	be	able	to	access	the	required	information to	
accomplish	tasks
• Data	should	not	be	duplicated (id/identifiers	are	OK!)

•Structure	design	around	the	data to	be	
stored
• Nouns	should	become	classes
• Classes	should	have	intelligent	behaviors (methods)	that	
may	operate	on	their	data



An	object	oriented	design	must	work!

Make	sure	all	the	data	that	you	need	is	stored	
somewhere
•And	that	you	can	access	it	from	the	classes	that	
need	it
•The	solution	is	not	to	keep	2	copies	of	the	same	
data.



A	good	object	oriented	design	is	structured	
around	the	data

•Look	for	the	nouns	in	your	problem,	consider	
making	them	classes
•…if	they	are	complex	enough

•Put	the	data	you	need	to	store	as	fields	in	
your	classes
•Add	operations	to	the	classes	to	accomplish	
what	your	need
•Avoid	Plural	Nouns



An	Example	Problem

A	website	tracks	books	and	the	kids	that	read	them.		For	
each	book	the	system	stores	the	name	and	author.		For	
each	kid	the	system	stores	name	and	grade	level.		The	
teacher	enters	when	a	kid	reads	a	particular	book.		It	
should	be	possible	to	print	a	report	on	a	book	that	
includes	all	kids	who	have	read	a	particular	book.		It	
should	be	possible	to	print	a	report	on	a	kid	that	includes	
the	books	a	particular	kid	has	read.

Make	a	UML	diagram	of	your	proposed	design	for	this	
system.		



Basic	solution

Note	that	List<Book>	isn’t	listed	by	name	as	an	instance	variable	of	
Kid,	but	the	line	from	Kid	to	Book	with	the	*	implies	that.	Ditto	for	
List<Kid>	in	book,	since	the	arrow	is	double-ended	with	*	on	each	
end



Main	class

• In	really	small	programs,	you	
could	just	have	them	as	local	
variables	in	a	static	main
• But	for	larger	programs,	it’s	
more	usual	for	the	class	with	
main	to	be	a	real	class	with	
fields	(also	aids	testing)
• In	our	very	simple	designs,	this	
class	also	deals	with	user	input
• Also	be	sure	your	design	shows	
where	things	start	and	how	user	
commands	are	handled



Today’s	Focus

1. Structure	your	program	around	the	data	
that	needs	storing
• Nouns	become	your	classes,	operations	become	their	
methods

2. Your	structure	needs	to	function	correctly
• Every	class	must	have	access	(directly	or	indirectly)	to	the	
data	it	needs	to	complete	its	operations
• Usually	this	means	the	problem	must	be	modeled	
correctly
• Data	should	also	not	be	duplicated



Consider

Bad	Solution	A

Bad	Solution	B



In	most	cases	non-workable	design	is	caused	
by…

•Not	reading	the	problem	carefully	or	not	mapping	it	
to	design	carefully	(e.g.	not	noticing	that	each	kid	
reads	several	books,	not	just	one)
•Not	thinking	about	how	specific	required	features	
might	be	implemented	(e.g.	how	can	we	print	a	
book	report	if	we	don’t	have	access	to	the	book	
objects?)
•Duplicating	data	(e.g.	what	does	it	matter	if	we	
store	a	copy	of	the	author	and	title	for	every	kid	
that	reads	the	book)



In	a	particular	card	game,	players	have	hands	of	cards.	 Each	card	is	
worth	some	points	and	also	has	a	color	(red,	blue,	green).	 During	play,	
players	accrue	bonuses	that	mean	cards	of	a	particular	color	are	worth	
bonus	points.	 During	play,	sometimes	a	random	card	is	selected	from	
one	player's	hand	and	moved	to	another	player's	hand.	 At	the	end	of	
game,	it	is	necessary	to	compute	the	total	points	for	each	player's	
hand.	

What	is	wrong	with	this	design?	(Hint:	look	at	and	refer	to	your	design	
principles	by	number).		I	see	at	least	2	separate	categories	violated.

3



My	answer	(in	order	of	importance)
1a.		The	design	does	not	function	correctly
The	player’s	color	bonus	cannot	be	preserved	if	he/she	loses	all	their	
cards	of	a	particular	color
It	requires	iterating	over	all	objects	to	get	the	full	set	of	cards	in	the	
players	hands	to	move	cards	or	compute	final	total
1c.	Playername &	player	color	bonus	are	duplicated	across	cards
2a.		Player	(common	noun	from	problem)	not	represented



In	a	particular	card	game,	players	have	hands	of	cards.	 Each	card	is	worth	
some	points	and	also	has	a	color	(red,	blue,	green).	 During	play,	players	
accrue	bonuses	that	mean	cards	of	a	particular	color	are	worth	bonus	
points.	 During	play,	sometimes	a	random	card	is	selected	from	one	
player's	hand	and	moved	to	another	player's	hand.	 At	the	end	of	game,	it	
is	necessary	to	compute	the	total	points	for	each	player's	hand.	

What	is	wrong	with	this	design?	(Hint:	look	at	and	refer	to	your	design	
guidelines).		I	see	at	least	2	separate	categories	violated.

4



My	answer	(in	order	of	importance)
1a.		The	design	does	not	function	correctly
Once	a	card	is	added	to	a	players	hand,	its	specific	point	value	is	lost	so	
the	card	cannot	be	randomly	moved	to	another	players	hand
2a.		Card	(common	noun	from	problem)	not	represented



In	a	particular	card	game,	players	have	hands	of	cards.	 Each	card	is	
worth	some	points	and	also	has	a	color	(red,	blue,	green).	 During	play,	
players	accrue	bonuses	that	mean	cards	of	a	particular	color	are	worth	
bonus	points.	 During	play,	sometimes	a	random	card	is	selected	from	
one	player's	hand	and	moved	to	another	player's	hand.	 At	the	end	of	
game,	it	is	necessary	to	compute	the	total	points	for	each	player's	
hand.	

Now	design	your	solution	that	solves	all	problems.

5



My	Solution

getPoints(),	getColor()	too



A	problem	(if	we	have	time)
A	factory	sells	a	small	number	of	unique	products.		Each	
product	has	an	id	code,	a	description,	price	and	quantity	(the	
amount	currently	available	at	the	factory).		When	a	customer	
places	an	order,	they	buy	a	specific	number	of	each	product.		
The	order	needs	to	be	stored	in	the	system	for	future	reference,	
with	the	customer’s	name	and	address.

At	some	point,	the	order	should	ship	to	the	customer,	and	that	
date	should	also	be	recorded.

The	main	operation	of	the	system	is	to	add	a	new	order	and	
mark	an	order	as	shipped.
In	a	group	of	2-3,	make	with	an	object	design	for	this	system	
and	document	it	in	UML	(on	paper).



A	problem	–revised
Now	orders	can	be	partially	shipped	– i.e.	a	single	order	might	
take	several	shipments	to	complete.

The	main	operation	of	the	system	is	to	add	a	new	order	and	
enter	shipments	for	orders.

In	a	group	of	2-3,	revise	your	design	to	accommodate	
this	new	issue.





For	Next	Class

• Solve	the	2	Design	Problems	in	the	handout
• Bring	your	solution	to	be	collected	at	the	start	of	next	class

• Create	a	UML	diagram	for	your	Basketball	Warmup	solution
• Most	students	find	a	tool	suited	to	this	task	to	be	helpful.	UMLet
http://www.umlet.com/ is	pretty	good,	for	example.
• Due	tomorrow	night.

• Start	to	think	about	how	you	could	improve	the	design.	We’ll	discuss	
more	design	improvements	tomorrow.	
• Heads-up,	you’ll	create	a	better	design	and	submit	UML	for	it	as	well,	also	
due	tomorrow	night!)


