CSSE 220

Object-Oriented Design
Files & Exceptions

Check out FilesAndExceptions from SVN

Announcements

« Take Moodle survey today to voice your preferences for project

partners.

New UML Notation: Cardinality

I 1..10

Manager P> Employee

Each manager has

between 1 and 10
employees. Maybe in
an arraylist?

More Cardinality

Manager 3 Employee

Every employee has
exactly 2 managers.
Note that this can be
used even if there is no
reference from
Employee to Manager

Managers have any number of
employees.

The * means “zero to infinity” —
any arbitrary number. You can
also occasionally see something
like 4..* to mean 4 or more.

What does this diagram mean?

EventParser

L

EventType

2
0.1

Event

Summary of
UML Class Diagram Arrows

Interface

Inheritance : Association Dependency
. Implementation)
(is-a) (is-a) (has-a-field) (depends-on)
Message «interfacens MailPanel Dimension
ActionListener
/h
Y 3
| |
| |
MessageWith SendHandler MailFrame MailFrame
Attachments

User <———3 MailBox TWO'Way DependenCy

1.*] .
User MailBax Cardlnallty

(one-to-one, one-to-many)
One-to-many is shown on left

Reading & writing files
When the unexpected happens

FILES AND EXCEPTIONS

File 1/0: Key Pieces

Input: F1le and Scanner

Output: PrintWriter and printin

© Be kind to your OS: close () all files
Letting users choose: JF11eChooser and
File

Expect the unexpected: Exception handling

Refer to examples when you need to...

Exception — What, When, Why,

How?
* What:
— Used to signal that something in the code has
gone wrong
* When:

— An error has occurred that cannot be handled in
the current code
 Why:
— Breaks the execution flow and passes exception
up the stack

Exception — How?

* Throwing an exception:
throw new EOFException(“Missing column”);

* Handling (catching) an exception:

try {
//code that could throw an exception

}
catch (ExceptionType ex) {

//code to handle exception

}
 When caught you can:
— Recover from the error OR exit gracefully

What happens when no exception
is thrown?

Scanner inScanner;
try {

If this line is successful

inScanner =

new Scanner(new File(“test.txt”);

//code for reading lines

} catch (IOException ex) {
JOptionPane.

showMessageDialog("File not found.");

Code continues on

} finally {

inScanner.close(); . .
} This runs after code in try completes

What happens when exception is
thrown?

Scanner inScanner;

try {
inScanner — If this line throws exception

new Scanner(new File(“test.txt”);

//code for reading lines <
} catch (IOException ex) {

JOptionPane.
showMessageDialog("File not found.");

} finally {

| inscannerclose()

When exception is not handled?

public String readData(String filename)
throws IOException {
Scanner inScanner =
new Scanner(new F
//code for reading lines
inScanner.close();

If this line throws exception

main -> readAllFiles -> readData

If unhandled, exception bounces to
method that called it, then up the chain.

A Checkered Past

* Java has two sorts of exceptions

1. Checked exceptions: compiler checks that

calling code isn’t ignoring the problem
— Used for expected problems

2. Unchecked exceptions: compiler lets us

ignore these if we want
— Used for fatal or avoidable problems
— Are subclasses of RunTimeException or Error

A Tale of Two Choices
Dealing with checked exceptions

1.Can propagate the exception
— Just declare that our method will pass any

exceptions along...

— public void loadGameState() throws
IOException

— Used when our code isn’t able to rectify the
problem

2. Can handle the exception
— Used when our code can rectify the problem

Handling Exceptions

e Use try-catch statement:

try {
// potentially “exceptional” code]-
} catch (EXcept1onType var) { S
// handle exception for as many different
} exception types as you
need.

Related, try-finally for clean up:
try {
// code that requires “clean up”
¥ // then maybe some catches
finally {

// runs even if exception occurred -
Q7

¥

Exception Activity

* Look at the code in FileAverage, focusing on
the use of exceptions
e Solve the problems in FileBestScore

Exam 2

Paper part (~50 pts) includes:

Design Problem (10 points)

Questions about coupling, cohesion, UML (~15 points)
Question about exceptions (4 points)
Compile/runtime/printing question (~11 points)
Tracing a recursive function (10 points)

You can bring 1 sheet of notes + OO
Principles for 220 + UML Cheatsheet

Exam 2

Computer part includes:

Recursion
Problem where you must use inheritance or interfaces to

remove code duplication
Problem where you have to layout a GUIl and handle

updates using listeners

