
CSSE 220

More interfaces
More recursion

More fun?

Check out RecursiveHelperFunctions and BettingInterfaces from SVN

Exercise time

• Solve the sumArray function recursively

– It’s in the RecursiveHelperFunctions project

• You can work with friends, but each of you
should get the code working on your own
computer

Recursive Helper Functions – What,
When, Why, How?

• What:
– A recursive function that is called by another (non-

recursive) function

– The non-recursive function (the caller) doesn’t do
much

• When:
– Additional parameters are needed

• Often the initial function you’re given is not in the ideal form
for a recursive solution

– Return values need to be updated

Recursive Helper Functions – What,
When, Why, How?

• Why:

– Makes function called by external code cleaner/easier
to use

• Does not rely on caller to understand how to initialize the
information for the helper

– Easier to understand by breaking problem down to
smaller pieces

• How:

– Methods named coolFunction & coolFunctionHelper

• 90% of the code is in coolFunctionHelper

RecursiveHelperFunctions

• Solve the remaining problems

– all the problems will require you to create a
recursive helper function

• You can work with a friend but make sure both
of you write the code

• Save every solution we find to sub-problems

• Before recursively computing a solution:
– Look it up

– If found, use it

– Otherwise do the recursive computation

• Study the memoization code in the
RecursiveHelperFunctions project

Memoization

What if the recursive call isn’t in the
return?

• Let’s start the quiz problem together, then you
can finish it on your own.

BettingInterfaces

• Get in groups of 2-3…no one working alone

• Understand the given code, the duplication, plus
the additional features you will be adding. Look
at 3 TODOs in BettingMain.

• Design a solution for all 3 TODOs using interfaces
and make a UML diagram describing it

• Get myself or a TA to check out your UML

• Once we sign off – start coding
– You only need 1 computer for this one.

– I recommend you do each TODO one by one rather
than doing everything in one go

Hints

1) Your interface will likely be called Bet

2) You should have 3 classes implementing Bet,
one for each of the current types of bets in
the code, one for the new one you’re being
asked to implement

3) You’ll need to update the lists in main to a
single ArrayList<Bet> (or some other storage
method to main)

