
CSSE 220

Event Based Programming

Check out EventBasedProgramming from SVN

Interfaces - Review
• Interfaces are contracts

– Any class that implements an interface MUST provide an
implementation for all methods defined in the interface.

• Interfaces represent the abstract idea (and what it
can do):
– Measurable objects (return a measure)
– NumberSequences (get the next number, reset)
– Pet (Can be fed, can tell if eating, can tell name)

• Classes represent the concrete idea:
– Country, Bank Account
– AddOne, PowersOfTwo.
– Dog, Cat, Fish

Polymorphism! (A quick intro)

• Etymology:

– Poly many

– Morphism  shape

• Polymorphism means: An Interface can take
many shapes.

– A Pet variable could actually contain a Cat, Dog, or
Fish

Polymorphic method calls

• pet.feed() could call:
– Dog’s feed()

– Cat’s feed()

– Fish’s feed()

• Your code is well designed if:
– You don’t need to know which implementation is

used.

– The end result is the same. (“pet is fed”)

Q5

Interfaces – Review (continued)

• The specific method to use at runtime is
decided by late-binding

Sequence sequence = new PowersOfTwo();

System.out.println(sequence.next());

The declared type of operation is Sequence

The instantiation type is PowersOfTwo

At runtime, Java will use the method
implementation of next() from the PowersOfTwo
class, thanks to late-binding.

Finish the sentence

Using interfaces can help reduce _______
between classes.

1. Coupling

2. Cohesion

3. Encapsulation

4. Polymorphism

We need interfaces for event-based
programming in Java.

Graphical User Interfaces in Java

• We say what to draw

• Java windowing library:

– Draws it

– Gets user input

– Calls back to us with events

• We handle events
Hmm, donuts

Gooey

Next Assignment Preview

• Two stages

– Part 1: Ball Strike Counter (individual)

– Part 2: Optionally work with 1 partner

• Each list the other’s name in javadoc at top of file

• Both responsible for submitting own code

Handling Events

• Many kinds of events:
– Mouse pressed, mouse released, mouse moved,

mouse clicked, button clicked, key pressed, menu item
selected, …

• We create event listener objects
– that implement the right interface
– that handle the event as we wish

• We register our listener with an event source
– Sources: buttons, menu items, graphics area, …

Q1

Events

Mouse

Button

Keyboard

Event
Sources

Event
Listeners

ActionEvents

MouseEvents

KeyEvents

ActionListener

(KeyListener)

(MouseListener)

Register!

Simple Interactive GUI Workflow

1. Create JFrame (Needs additional configuration)

2. Create JButton

(JButton initially untethered and invisible)

3. Add JButton to JFrame (Can also be added to a JPanel)

4. Create ActionListener (must code what it does)

(Not connected to JButton, does nothing!)

5. Attach ActionListener to JButton

JFrame frame = new JFrame(“Breakfast for Goldilocks”);

JButton button = new JButton(“Eat Porridge”);

frame.add(button);

ActionListener ear = new MyListener();

button.addActionListener(ear);

Live Coding

In Class Activity 1

• In pairs or individually

• Look at the code in the capitalization example

• Then solve the addLettersProblem

• Get buttons and text to show up FIRST!

Key Layout Ideas

• JFrame’s add(Component c) method
– Adds a new component to be drawn

– Throws out the old one!

• JFrame also has method
add(Component c, Object constraint)
– Typical constraints:

• BorderLayout.NORTH, BorderLayout.CENTER

– Can add one thing to each “direction”, plus center

• JPanel is a container (a thing!) that can display
multiple components

Q2,3

JFrame BorderLayout

Advice

Look at the code in the capitalization example

Then solve the addLettersProblem

• Stage 1:
– Make sure buttons show up

– Make sure you can get message (JLabel) to appear

• Stage 2: Make sure buttons do ANYTHING
– Just have them System.out.println(“pressed”)

• Stage 3:
– Have the buttons perform desired behavior

General GUI Development Workflow

1. Create JFrame (configure!)

2. Create JPanel

3. Put JButtons (or JComponents) into JPanel

4. Add JPanel to JFrame

5. Create ActionListener

(Might need to create class!)

6. Attach ActionListener to JButton

7. Does ActionListener have what it needs?

(If not, pass it in the constructor!)

Mouse Listeners

public interface MouseListener {

public void mouseClicked(MouseEvent e);

public void mouseEntered(MouseEvent e);

public void mouseExited(MouseEvent e);

public void mousePressed(MouseEvent e);

public void mouseReleased(MouseEvent e);

}

Q5

Repaint (and thin no more)

• To update graphics:
– We tell Java library that we need to be redrawn:

• drawComponent.repaint()

– Library calls paintComponent() when it’s
ready

• Don’t call paintComponent() yourself!
It’s just there for Java’s call back.

Q4

Activity 2

Read the code in the
rectangleExample, then
individually or in pairs
solve the clicksProblem.

Draw a 20x20 blue circle
upon left-click, centered
on click

Clear screen button does
what it says.

If you have time, make a
right click make a red
square

Using Inner Classes

• Classes can be defined inside other classes or
methods

• Used for “smallish” helper classes

• Example: Ellipse2D.Double

• Often used for ActionListeners…
• Add to Breakfast program?

Outer class Inner class

Q6

Anonymous Classes

• Sometimes very small helper classes are only
used once

– This is a job for an anonymous class!

• Anonymous no name

• A special case of inner classes

• Used for the simplest ActionListeners…

Inner Classes and Scope

• Inner classes can access any variables in
surrounding scope

• Caveats:
– Can only use instance fields of surrounding scope

if we’re inside an instance method

• Example:
– Prompt user for what porridge tastes like

Work Time

• LinearLightsOut

