CSSE 220

Collision Handling without instanceof

Checkout DoubleDispatch project from SVN




The problem

* Monsters can collide with rocks.

* Rocks can crush monsters.

* Players can collide with monsters.
* Players can be crushed by rocks.

* Players can take powerups.

So many collisions! How do we handle them all?




What not to do

@ GameComponent

@ handleCollisions()
@ handleCollisioniHero, Monster)
@ handleCollision(Hero, Rock)

@ handleCollision(Hero, SpeedPowerup]
@ handleCollision(Monster, Rock)

@ handleCollision(Monster, SpeedPowerup)
@ handleCollision(Monster, Monster)

@ handleCollision(Rock, SpeedPowerup)

@ handleCollision(Rock, Rock)

Why is this design bad?




@Hern

@ purmpl]

g

ra

-

-

Slightly better?

@ GameObject

@ updatel)
o collidelGameObject other)

SRV

! \
@ Mnnﬂster @ank

@ SpeedPowerup

@ breatheFirel) @ falll)

@ applySpeedBoostiHero hero)

But tempts you to use instanceof...




A bad Player.collide(GameObject 01)

// player has landed on ol
if(ol instanceof SpeedPowerUp) {
// code to increase speed

}

if(ol instanceof LifePowerUp) {
// code to increase life

¥




Same Bad Idea

//player has landed on ol

if(ol.type().equals(“SpeedPoweruUp™))
{

//code to increase speed

}
if(ol.type().equals(“LifePowerUp”)) {

//code to increase life

¥




instanceof - in general

* instanceof is like static. It is dead to you.
* Instead: add new interface methods.

* Recall this is called polymorphism.




Polymorphic Solution

@ Gamelbject

(N N N BN

updatel)
collideiGameChbject other]

collideWithPlayer(Player thisPlayer)
collidewithMonsteriMonster thisMonster)

collideWithRock(Rock thisRock)

collidewWithSpeedPowerupiSpeedPowerlp thisPowerUp)

N

&
-

!
@ Monster

@ breatheFire()

D

]

WA

%
@F‘Luck

@ fall()

o,

"
"y
o
s

@ SpeedPowerup

@ applySpeedBoostiHero hero)




Polymorphic Solution

ol.collideWithPlayer(player);

// 1in SpeedPowerUpClass
void collideWithPlayer(Player p) {
// code to increase speed




What made this work

e We knew one Of the ol.collideWithPlayer(player);

objects was the Player. // in SpeedPowerUpClass
void collideWithPlayer(Player p) {
// code to increase speed

* In general: }

— Objects know their own
type.

— They also know the
other object’s interface.




Double Dispatch

Objects make collide () calls on each other
until one decides to handle the collision.

public class SpeedPowerUp extends GameObject {
public void collide(GameObject other) {
other.collideWithSpeedPowerUp(this);

¥ The other object decides for itself how to respond.

public void collideWithPlayer(Player thisPlayer) {
//do specific action to player
thisPlayer.speedUp();

}
The Player called speedPowerUp.collideWithPlayer(thisPlayer)

See DoubleDispatch
in repo




Work time
Be sure everyone is getting a chance to drive.

TEAM PROJECT




