
CSSE 220

Performance with Threads

Checkout SumArrayInParallel project from SVN

Uses for Threads

• Multiple code paths running at once
– Animation
– Responding to user input at the same time we’re

doing a calculation
– etc.

• What about performance?
– Could we not get better performance by creating

enough threads to divide work among them on
different processor cores?

Conceptually

• The concept is pretty straightforward:
– Existing Problem: A large task that runs on one

core, doing one thing at a time
– Running a program in one core on our machines

would be roughly as “fast” as running the same
program on a processor from 12 years ago! (2004
was the last time Rose had single-core machines)

– Modern processors have multiple cores
• HOW DO WE TAKE ADVANTAGE OF MULTIPLE CORES??

Modern Operating Systems

• Woo Hoo!
• Modern operating systems automatically

(more-or-less) send waiting threads to a
processor core that is waiting for work

• If we write the program to allow the operating
system to assign threads to separate cores,
then our task (in this class) is just splitting up
the work into different threads!

Our Task Today

• We want to sum a huge array of integers
• Serially, we just add each array element to the

current sum and then return the sum when
finished

• With threads, we can split up the work very
easily because of the associative law of
addition

The idea

• When a very large task can be split into pieces
– Assign a thread to one piece and let that thread

return its result

12 3 5 44 -86 5 -7 66 9 -74 42 2

The idea

• When a very large task can be split into pieces
– Assign a thread to one piece and let that thread

return its result

12 3 5 44 -86 5 -7 66 9 -74 42 2

Thread 1 Thread 2 Thread 3 Thread 4

The idea

• When a very large task can be split into pieces
– Assign a thread to one piece and let that thread

return its result

12 3 5 44 -86 5 -7 66 9 -74 42 2

Thread 1 Thread 2 Thread 3 Thread 4

20 -37 68 -30

Add individual portions and return result: 21

The Difference

• Conceptually, one core adding 12 numbers
serially will “take longer” than 4 cores adding
3 numbers in parallel, then adding those 4
together.

• IN REALITY, we need to sum a very large array
to see the performance gains in Java since the
threads are so heavyweight
– We’ll use about 200,000,000 integers in an array!

Student Evaluations

• The school treats these very seriously
• I treat them very seriously too...usually

reading them multiple times
• Try to be as honest and detailed as you can
• If you liked the course, don’t say nice things

about me (though I like that of course) tell me
what topics you thought were most exciting or
useful

Presentations

• 8 minutes long
• ~3 minutes showing off your extra features
• ~5 minutes explaining JUST ONE technical

decision in detail
 Could be a design decision, feature

implementation, or tricky bug
 Be careful about code examples (good –

but in moderation)
 Should include prepared slides usually

including diagrams

TEAM PROJECT

Work time
PRESENTATION IS FRIDAY!!!

