
CSSE 220

Inheritance

Check out Inheritance from SVN

Inheritance

• Sometimes a new class is a special
case of the concept represented
by another

• Can “borrow” from an existing
class, changing just what we need

• The new class inherits from the
existing one:
– all methods

– all instance fields

Q1

Examples

• class SavingsAccount extends BankAccount

– adds interest earning, keeps other traits

• class Employee extends Person

– adds pay information and methods, keeps other
traits

• class Manager extends Employee

– adds information about employees managed,
changes the pay mechanism, keeps other traits

Notation and Terminology

• class SavingsAccount extends BankAccount {

// added fields

// added methods

}

• Say “SavingsAccount is a BankAccount”

• Superclass: BankAccount

• Subclass: SavingsAccount

Inheritance in UML

The “superest” class
in Java

Still means “is
a”

Solid line
shows

inheritance

Q2

Interfaces vs. Inheritance

• class ClickHandler implements MouseListener

– ClickHandler promises to implement all the
methods of MouseListener

• class CheckingAccount extends BankAccount

– CheckingAccount inherits (or overrides) all the
methods of BankAccount

For client code reuse

For implementation code reuse

Inheritance Run Amok?

With Methods, Subclasses can:

• Inherit methods unchanged

• Override methods
– Declare a new method with same signature to use

instead of superclass method

• Add entirely new methods not in superclass

Q3

With Fields, Subclasses:

• ALWAYS inherit all fields unchanged

– Only have access to protected, public, and
package level fields

• Can add entirely new fields not in superclass

DANGER! Don’t use the
same name as a superclass

field!

Q4

Super Calls

• Calling superclass method:

– super.methodName(args);

• Calling superclass constructor:

– super(args);

Must be the first line of
the subclass constructor

Q5

Polymorphism and Subclasses

• A subclass instance is a superclass instance
– Polymorphism still works!

– BankAccount ba = new CheckingAccount();

ba.deposit(100);

• But not the other way around!
– CheckingAccount ca = new BankAccount();

ca.deductFees();

• Why not? BOOM!

Q6

Another Example

• Can use:
– public void transfer(double amount, BankAccount

o){

this.withdraw(amount);

o.deposit(amount);

}

in BankAccount

• To transfer between different accounts:
– SavingsAccount sa = …;

– CheckingAccount ca = …;

– sa.transfer(100, ca);

Abstract Classes

• Hybrid of superclasses and interfaces
– Like regular superclasses:

• Provide implementation of some methods

– Like interfaces
• Just provide signatures and docs of other methods

• Can’t be instantiated

• Example:
– public abstract class BankAccount {

/** documentation here */

public abstract void deductFees();

…

}

Elided methods as before

Also look at the
code in the
shapes package,
especially
ShapesDemo
(during or after
class)

Access Modifiers

– public—any code can see it
– protected— package and subclasses can see it
– default—anything in the package can see it
– private—only the class itself can see it

• Notes:
– default (i.e., no modifier)—only code

in the same package can see it
• good choice for classes

– protected—like default, but
subclasses also have access
• sometimes useful for helper methods

Bad for
fields!

Q7

WORK TIME

Chess

Ball World

It's a solo project, but feel free to talk with others as you do it.

And to ask instructor/assistants for help

Q8-Q9

