
CSSE 220

Collision Handling without InstanceOf

Checkout DoubleDispatch project from SVN

Important Hint

• For ArcadeGame, you will need to figure out how
to draw various things on the screen

• Do this by having exactly 1 class that subclasses
JComponent and invokes ordinary drawOn
methods on all the other classes with the
Graphics2D. That is, structured similarly to
BallWorlds or BiggestFan.

• Do NOT do this by having a whole bunch of
subclasses of JComponent, all of which are added
to a frame or panel. You will get updating
problems.

InstanceOf

• If you do inheritance correctly, you shouldn’t
need instanceOf…

– General guideline: rather than instanceOf, make a
method in the class your instancing

• If things get complicated we can use

– Double Dispatch!

Bad Idea 1

// player has landed on o1

if(o1 instanceOf SpeedPowerUp) {

// code to increase speed

}

if(o1 instanceOf LifePowerUp) {

// code to increase life

}

Same Bad Idea

//player has landed on o1

if(o1.type().equals(“SpeedPowerUp”))
{

//code to increase speed

}

if(o1.type().equals(“LifePowerUp”)) {

//code to increase life

}

Simple Solution

o1.onPlayerCollision(player);

// in SpeedPowerUpClass

void onPlayerCollision(Player p) {

// code to increase speed

}

I think you can solve BomberMan just
with this simple solution, and a few

special cases

abstract class GameObject {

abstract boolean canBeMovedInto();

abstract void onBombDamage();

abstract void onPlayerCollision(..);

…etc

}

To Make The Simple Solution Work,
you have to avoid arbitrary objects

colliding with other objects

• That simple solution worked because we knew
one of the objects was the Player

• What if we just have a big array of
GameObjects, and sometimes GameObjects
move into the same square with each other

Let’s say you have this class …

public abstract class GameObject {

public abstract void collide(GameObject m);

public abstract void collide(Player m);

public abstract void collide(PowerUp m);

public abstract void collide(Monster m);
}

Late-Binding with Params? Uh oh…

• So this code:
GameObject m = getCollidedObject();

//We’ll say getCollidedObject() returned a PowerUp

this.collide(m);

• What method is called?
– collide(GameObject powerup)

• NOT collide(PowerUp powerup), even though the
actual/instantiation type of m was PowerUp

• Late-binding only works for the implicit argument
(what becomes this – thing to the left of the dot),
it doesn’t apply to parameter types.

This would work, but ew….
public abstract class Monster {

public void collide(Monster m) {
if (m instanceof Mushroom) {

this.collide((Mushroom)m); return;
}
if (m instanceof Centipede) {

this.collide((Centipede)m);return;
}
if (m instanceof Scorpion) {

this.collide((Scorpion)m); return;
}

}
public abstract void collide(Mushroom m);

public abstract void collide(Centipede m);

public abstract void collide(Scorpion m);
}

Ew means

Don’t Do This!

Let’s try Double Dispatch…

public abstract class GameObject {

abstract void collide(GameObject m);

abstract void collideWithPlayer(Player m);

abstract void collideWithMonster(Monster m);

abstract void collideWithPowerup(PowerUp m);
}

Double Dispatch

The key: You know your own type, so let’s say we’re in the PowerUp class, and
GameObject is of type Monster:

This will call the collideWithPowerUp method on the Monster class.

Then in the Monster’s collideWithPowerUp class, add code for what should
happen when a Monster collides with a PowerUp.

public class PowerUp extends GameObject {
public void collide(GameObject m) {

m.collideWithPowerUp(this);
}

public void collideWithPlayer(Player p) {
//do specific action

}
}

See DoubleDispatch

in repo

TEAM PROJECT

Work time

Be sure everyone is getting a chance to drive.

