
CSSE 220

Event Based Programming

Check out EventBasedProgramming from SVN

Interfaces - Review
• Interfaces are contracts

– Any class that implements an interface MUST provide an
implementation for all methods defined in the interface.

• Interfaces represent the abstract idea (and what it
can do):

– Measurable objects (return a measure)

– NumberSequences (get the next number, reset)

• Classes represent the concrete idea:

– Country, Bank Account

– AddOne, PowersOfTwo.

Interfaces – Review (continued)

• The specific method to use at runtime is
decided by late-binding

Sequence sequence = new PowersOfTwo();

System.out.println(sequence.next());

The declared type of operation is Sequence

The instantiation type is PowersOfTwo

At runtime, Java will use the method
implementation of next() from the PowersOfTwo
class, thanks to late-binding.

Finish the sentence

Using interfaces can help reduce _______
between classes.

1. Coupling

2. Cohesion

3. Encapsulation

4. Polymorphism

We need interfaces for event-based
programming in Java.

Graphical User Interfaces in Java

• We say what to draw

• Java windowing
library:
– Draws it
– Gets user input
– Calls back to us with

events

• We handle events Hmm, donuts

Gooey

Handling Events

• Many kinds of events:
– Mouse pressed, mouse released, mouse moved,

mouse clicked, button clicked, key pressed, menu item
selected, …

• We create event listener objects
– that implement the right interface
– that handle the event as we wish

• We register our listener with an event source
– Sources: buttons, menu items, graphics area, …

Q1

So, how do we do this?

Draw a blue

circle on left-

click, red square

on right-click

Each 20x20,

centered on click

Clear screen

button does what

it says.

Key Layout Ideas

• JFrame’s add(Component c) method
– Adds a new component to be drawn

– Throws out the old one!

• JFrame also has method
add(Component c, Object constraint)
– Typical constraints:

• BorderLayout.NORTH, BorderLayout.CENTER

– Can add one thing to each “direction”, plus center

• JPanel is a container (a thing!) that can display
multiple components

Q2,3

Mouse Listeners

public interface MouseListener {

public void mouseClicked(MouseEvent e);

public void mouseEntered(MouseEvent e);

public void mouseExited(MouseEvent e);

public void mousePressed(MouseEvent e);

public void mouseReleased(MouseEvent e);

}

Q5

Repaint (and thin no more)

• To update graphics:
– We tell Java library that we need to be redrawn:

• drawComponent.repaint()

– Library calls paintComponent() when it’s
ready

• Don’t call paintComponent() yourself!
It’s just there for Java’s call back.

Q4

Using Inner Classes

• Classes can be defined inside other classes or
methods

• Used for “smallish” helper classes

• Example: Ellipse2D.Double

• Often used for ActionListeners…
• Add to Breakfast program?

Outer class Inner class

Q6

Anonymous Classes

• Sometimes very small helper classes are only
used once

– This is a job for an anonymous class!

• Anonymous no name

• A special case of inner classes

• Used for the simplest ActionListeners…

Inner Classes and Scope

• Inner classes can access any variables in
surrounding scope

• Caveats:
– Can only use instance fields of surrounding scope

if we’re inside an instance method

• Example:
– Prompt user for what porridge tastes like

Work Time

• LinearLightsOut

