CSSE 220

Performance with Threads

Checkout SumArrayinParallel project from SVN

We Used Threads For:

 We have used threads for achieving more than
one “thing” at a time

— Animation
— TemperatureMonitor
— etc.

 What about performance?

— Could we not get better performance by creating
enough threads to divide work among them on
different processor cores?

Conceptually

* The concept is pretty straightforward:

— Existing Problem: A large task that runs on one
core, doing one thing at a time

— Running a program in one core on our machines
would be roughly as “fast” as running the same
program on a processor from 12 years ago! (2004
was the last time Rose had single-core machines)

— Modern processors have multiple cores
* HOW DO WE TAKE ADVANTAGE OF MULTIPLE CORES??

How occupied are your cores?

Thankfully, Windows allows us to use Resource
Monitor to track this

Go to All Programs -> Accessories -> System Tools
-> Resource Monitor
OR

Press Ctrl-Shift-Esc or Ctrl-Alt-Del on your
keyboard, to open the Task Manager.

— Then go to the Performance tab and click on the
Resource Monitor

Use Overview or CPU tab to monitor CPU usage

Modern Operating Systems

e Woo Hoo!

* Modern operating systems automatically
(more-or-less) send waiting threads to a
processor core that is waiting for work

* |f we write the program to allow the operating
system to assign threads to separate cores,
then our task (in this class) is just splitting up
the work into different threads!

Our Task Today

 We want to sum a huge array of integers

* Serially, we just add each array element to the

current sum and then return the sum when
finished

* With threads, we can split up the work very
easily because of the associative law of
addition

The idea

* When a very large task can be split into pieces

— Assign a thread to one piece and let that thread
return its result

12 |3 5 44 |-86 |5 -7 |66 |9 -74 |42 |1

The idea

* When a very large task can be split into pieces

— Assign a thread to one piece and let that thread
return its result

Thread1l | Thread2 | Thread3 | Thread 4

12 |3 5 44 |-86 |5 -7 |66 |9 -74 |42 |1

The idea

* When a very large task can be split into pieces

— Assign a thread to one piece and let that thread
return its result

12 |3 |5 4-865(66 |9 4 1

7 |74 |42
20 \\ -37 68 \\ -31

Add individual portions and return result: 20

(Thread 1 (FThread 2 fThread 3 fThread 4
4

The Difference

* Conceptually, one core adding 12 numbers
serially will “take longer” than 4 cores adding
3 numbers in parallel, then adding those 4
together.

* [N REALITY, we need to sum a very large array
to see the performance gains in Java since the
threads are so heavyweight

— We’ll use about 200,000,000 integers in an array!

Work time
PRESENTATION IS FRIDAY!!!

TEAM PROJECT

