
A Software Engineering Technique:
(Class Diagrams)

Download FirstOODesignPractice from
SVN

Part 1 of Many
Also Class Diagrams

• Programs typically begin as abstract ideas
• These ideas form a set of requirements (i.e.

what the user wants)
• We must take these requirements, and figure

out an approach for our coding
• Usually the approach is not obvious
• So we propose designs, then iteratively refine

them into something that might work
(continued…)

• So we propose designs, then iteratively refine
them into something that might work
• Many bad ideas in the process
• We don’t want to go through the effort of

implementing bad ideas in code
• But we need a way to communicate/think concretely

about these half-baked program approaches
• We need a diagram language!

} Class Diagrams (UML)
} UML – Unified Modeling Language
◦ Language unspecific
◦ Has a lot of different diagrams it provides

specifications for – but the class diagram
language is the most widely used

Team

teamAverage
name
students
addGrade(grade)
getTeamAverage()

Student

grades
name
addGrade(grade)

ClassName
Field names
Method names

• 3 sections
• Not the final version of

UML we will teach, but
covers the main points

Example

Team

teamAverage
name
students
addGrade(grade)
getTeamAverage()

Student

grades
name
addGrade(grade)

ClassName
Field names
Method names

A has a B (field)

Example

ClassName
Field names
Method names

*

Note the star means
several… usually a list or
collection.

} Shows the:
◦ Attributes

(data, called fields
in Java) and
◦ Operations

(functions, called
methods in Java)

of the objects of a class
} Does not show the

implementation
} Is not necessarily

complete

String
data: char[]

contains(s: String): boolean

endsWith(suffix: String): boolean

indexOf(s: String): int

length(): int

replace(target: String,
replace: String): String

substring(begin: int ,
end: int): String

toLowerCase(): String

Class name

Fields

Methods
String objects are immutable – if the method produces
a String, the method returns that String rather than
mutating (changing) the implicit argument

Inheritance
(is-a)

Interface
Implementation

(is-a)

Association
(has-a-field)

Dependency
(depends-on)

Two-way Association

Two-Way Dependency

Cardinality
(one-to-one, one-to-many)

One-to-many is shown on left

We want to have a system that lets us search the
catalogs of various nearby libraries for books.

We need to track the names, phone numbers, and
addresses of the libraries. We need to track the
titles, authors, and ISBN numbers of the books.

The main operation of the system is to search for a
particular book by keyword (could be author, title, or
ISBN), and get a listing of its info and the library that
has it.
In a group of 2-3, come up with a object design for
this system and document it in UML (on a sheet of
paper).

Book
name
author
isbn
matchesKeyword(word)

LibraryMain

books
libraries
booksForKeyword(word)
handleSearch(word)
main

*

Library
name
address
phone

*
Some notes:
a. It’s not really necessary to list

fields for books/libraries if
you have lines

b. Technically, we could
probably get away with just a
books list (though adding new
books would be difficult in
that case)

} Your design might have just included
classes Book and Library – but
remember all books and libraries must
be stored somewhere

} In really small programs, you could just
have them as local variables in a static
main

} But for larger programs, it’s more usual
for the class with main to be a real class
with fields (also aids testing)

} In our very simple designs, this class
also deals with user input

} Also be sure your design shows where
things start and how user commands
are handled

LibraryMain

booksForKeyword(word)
handleSearch(word)
main

} The “things” of what you’re describing usually
become the classes
◦ The verbs usually become methods of the classes

} Avoid using plurals
◦ We make an ArrayList of Face objects, not Faces.

} Make it work!
◦ Go through it with some “use case” in mind and

make sure that when this object is created, you can
accomplish that case. Otherwise, redesign that
design until it “works!!!”

} Come from nouns in the problem description
} May…
◦ Represent single concepts
� Circle, Investment
◦ Represent visual elements of the project
� FacesComponent, UpdateButton
◦ Be abstractions of real-life entities
� BankAccount, TicTacToeBoard
◦ Be actors
� Scanner, CircleViewer
◦ Be utility classes that mainly contain static methods
� Math, Arrays, Collections

} Can’t tell what it does from its name
◦ PayCheckProgram

} Turning a single action into a class
◦ ComputePaycheck

} Name isn’t a noun
◦ Interpolate, Spend

*See http://en.wikipedia.org/wiki/Code_smell
http://c2.com/xp/CodeSmell.html

A factory sells a small number of unique products.
Each product has an id code, a description, price and
quantity (the amount currently available at the
factory). When a customer places an order, they buy
a specific number of each product. The order needs
to be stored in the system for future reference, with
the customer’s name and address.

At some point, the order should ship to the
customer, and that date should also be recorded.

The main operation of the system is to add a new
order and mark an order as shipped.
In a group of 2-3, make with an object design for
this system and document it in UML (on paper).

Now orders can be partially shipped – i.e. a single
order might take several shipments to complete.

The main operation of the system is to add a new
order and enter shipments for orders.

In a group of 2-3, revise your design to
accommodate this new issue.

Product
id
description
price
factoryQuantity

FactoryMain

creating order ??
creating shipment ??
main

*

Order
name
address
phone

*
ProductOrder
quantity

Shipment
date

* *

*

Design it
Let me or a TA look at it
Implement it in code

} Decide what classes ought to be in the
system and what methods/fields those
classes should have (your design should have
at least 2 classes)

} Don’t forget one class needs to have a main
method

} Make sure your design works!
} Write down your answers on a piece of paper

with all of your team’s names on it
} Call me over when you think you’re done –

then you’ll implement it

} Task: Make Class
diagrams for the
Invoice example
from OrderTaker

Class Name
Fields

Methods

} Decide what classes ought to be in the
system and what methods/fields those
classes should have (your design should have
at least 3 classes)

} Don’t forget one class needs to have a main
method

} Make sure your design works!
} Write down your answers on a piece of paper

with all of your team’s names on it
} Call me over when you think you’re done
} This will be your quiz for today – I’ll be

lenient

