
Object Intro and Miscellaneous

Checkout ObjectIntroAndMisc project from SVN

Help from Peers

• Having a peer help you with some strange bug
or specific problem – Great Idea!

• Discussing your approach to a problem with a
peer – still OK

• Letting a peer copy your code/Emailing code
to a peer – NEVER OK

• Every person has a unique code style, it’s easy
to tell when two sets of code are too similar

Q1

Javadoc
comments

/**

* Has a static method for computing n!

* (n factorial) and a main method that

* computes n! for n up to Factorial.MAX.

*

* @author Mike Hewner & Delvin Defoe

*/

public class Factorial {

/**

* Biggest factorial to compute.

*/

public static final int MAX = 17;

/**

* Computes n! for the given n.

*

* @param n

* @return n! for the given n.

*/

public static int factorial (int n) {

...

}

...

}

We left out something

important on the previous

slide – comments!

Java provides Javadoc

comments (they begin with

/**) for both:

• Internal documentation for

when someone reads the

code itself

• External documentation for

when someone re-uses the

code

Comment your own code now, as

indicated by this example. Don’t

forget the @author tag in

HelloPrinter. Q2 - 3

Writing Javadocs

• Written in special comments: /** … */

• Can come before:
– Class declarations

– Field declarations

– Constructor declarations

– Method declarations

• Eclipse is your friend!
– It will generate Javadoc comments automatically

– It will notice when you start typing a Javadoc comment

In all your code:

• See http://www.rose-
hulman.edu/class/csse/csse220/201710/Homework/programGradin
g.html

• Write appropriate comments:
– Javadoc comments primarily for classes.

– Explanations of anything else that is not obvious in any spot.

• Give self-documenting variable and method names:
– Use name completion in Eclipse, Ctrl-Space, to keep typing cost low and

readability high

• Use Ctrl-Shift-F in Eclipse to format your code.

• Take care of all auto-generated TODO’s.
– Then delete the TODO comment.

• Correct ALL compiler warnings. Quick Fix is your friend!

http://www.rose-hulman.edu/class/csse/csse220/201710/Homework/programGrading.html

• Breakpoint

• Single stepping

• Inspecting variables

Debugging—Key Concepts

Q4

 Debugging Java programs in Eclipse:
◦ Launch using the debugger

◦ Setting a breakpoint

◦ Single stepping: step over and step into

◦ Inspecting variables

 Complete WhackABug exercise

Debugging—Demo

Primitive types

Copyright © 2006 Pearson Addison-
Wesley. All rights reserved. 1-8

Most common
number types in Java
code

Gotcha!!!

• int vs. double:

– int num1 = 1

– double result = num1 / 2;

– //what is result??

• How do we fix this?

Exercise

• Work on SomeTypes.java

Object Constructors

Object Constructors

• int num = 5;

– This works for primitive typed data

• What about “objects” (made from classes)?

Object Constructors

• int num = 5;

• Rectangle box = new Rectangle(0, 0, 5, 5);

Rectangle box = new Rectangle(0, 0, 5, 5);

Using Constructors

In Java, all variables

must have a type

Every variable must have a

name. The new operator is what

actually makes the new

object, in this case a new

rectangle.

The constructor arguments

specifies that the new

rectangle called box should

be at the origin with a height

and width of 5.

Q6

Object Constructors

• Every “object” must be created

– How do we create them?

• Open ObjectConstructorPractice.java

– Let’s do the first couple of TODOs together

• On your own: Try creating a variable of the
String class using a constructor (in the main
method somewhere).

Q7 - 9

Unit Testing

• Idea: Test “small pieces” of larger program

– Do the expected values match what you ACTUALLY
get?

• How to test in this manner?

– Could make a main method that calls all the
methods

– JUnit!

• Creating a Tester JUnit class

Q10

Unit Tests (from the book)

1. Construct one or more objects of the class
that is being tested

2. Invoke one or more methods

3. Print out one or more results

4. Print the expected results

5. Do 3 and 4 match?

(Pages 102-103 in book)

What are good unit tests?

• Unit tests should be small pieces that test:

1. The most common cases

2. The edge cases (also when switching from positive
to negative, etc.)

3. All specific/special cases (e.g., when 0, the behavior
is different than for any other value)

4. When you find and fix a bug, you should have a unit
test for this so it doesn’t ever happen again. Fix
things once and for all!

5. Any overly complex code that 1-4 above don’t cover

Q11

Unit Testing

• Use “assert” to make sure results match

• Let’s look at BadFrac.java and BadFracTest.java

– Let’s make some unit tests and figure out why this
project has been yielding some strange results

Q12 - 13

