
Linked	Lists	Part	2

Linked	List	Implementation

Checkout	SinglyLinkedList project	from	SVN	(Homework)
Checkout	LinkedListSimpleGeneric
Checkout	CoolPair

Let’s	modify	our	simple	linked	list	to	
take	arbitrary	objects!

• Two	ways:
– Object
– Generics

What	if	we	just	use	object?
LinkedList objectList = new LinkedList();
objectList.addAtBeginning(new Dog("Max", 15));
objectList.addAtBeginning(new Dog("Sammy", 9));
objectList.addAtBeginning(new Dog("Gracie", 4));

System.out.println("Average age is: " +
getAverageAge(objectList));

Output: Average age is: 9.333333333333334

The	problem	with	Object		
//But what happens if we add a car to that list?
objectList.addAtEnd(new Car("Toyota", "Camry"));

System.out.println("Average age is: " + getAverageAge(objectList));

Output:
Exception in thread "main" java.lang.ClassCastException:

withObject.Car cannot be cast to withObject.Dog

Java allows us to add a
Car to a list of Dogs,
because it only knows the
Node values are stored as
objects

public static double getAverageAge(LinkedList objectList) {
double totalAge = 0;
int count = 0;
for (Object o : objectList) {

Dog d = (Dog)o;
totalAge += d.getAge();
count++;

}
return totalAge/count;

}

This cast is what causes the
previous code to fail (when it
tries to cast a Car to a Dog).
But we must have the cast to
get the age field of the Dog
objects.

Generics	Prevent	Type	Errors
LinkedList<Dog> dogList = new LinkedList<Dog>();
dogList.addAtBeginning(new Dog("Max", 15));
dogList.addAtBeginning(new Dog("Sammy", 9));
dogList.addAtBeginning(new Dog("Gracie", 4));
//But what happens if we add a car to that list?
dogList.addAtEnd(new Car("Toyota", "Camry"));

dogList is declared as a generic list of Dog
objects, so only Dog objects (and objects
that inherit from Dog) can be put in this list.

Attempting to insert an object that IS NOT a
Dog into the list causes a compilation error
(better since we’d rather it crash for us and
not our clients!).

public static double getAverageAge(LinkedList<Dog> dogList) {
double totalAge = 0;
int count = 0;
for (Dog d : dogList) {

totalAge += d.getAge();
count++;

}
return totalAge/count;

}

The enhanced for loop no longer needs a
cast, because it knows that the objects in the
list are Dog objects. No possibility for a
runtime error.

• Type	parameters:
– class DLList<E>

• Bounds:
– class DLList<E extends Comparable>
– class DLList<E extends Comparable<E>>
– class DLList<E extends Comparable<? super E>>

• Generic	methods:
– public static <T> void shuffle(T[] array)

• http://docs.oracle.com/javase/tutorial/java/generics/index.html

Generics	Advanced

What	are	iterators	and	why	do	they	
exist?

• Iterators	are	objects	designed	to	encapsulate	a	
position	in	a	data	structure	– in	the	case,	a	
pointer	to	a	current	(and	previous)	node	in	a	
list

• Your	textbook	has	a	detailed	discussion	of	the	
operation	of	linked	list	iterators,	including	lots	
of	sample	code

Accessing	the	Middle	of	a	LinkedList

Why	iterators?	
They	let	you	write	nice	for	loops!

Enhanced	For	Loop
for (String s : list) {

// do something
}

What	Compiler	Generates
Iterator<String> iter =

list.iterator();

while (iter.hasNext()) {
String s = iter.next();

// do something

}

Practice
• Weird	warmup:	Add	an	iterator	to	CoolPair<T>

– Weird:	why	iterate	over	a	Pair?	Oh	well.

• Make	LinkedListGeneric generic	and	add	an	
iterator	to	it.	Notes:
– T	could	be	any	object.	So	will	need	to	change	==	to	
.equals()	when	comparing	things	of	type	T.

• But	still	use	==	for	Nodes:	if	(this.current ==	null)	{	…}
– When	adding	<Integer>	to	tests,	also	need	to	change	
the	int[]	array	passed	in	to	Integer[]	to	match.

– You	can	test	your	iterator	using	a	foreach loop	in	main
– Get	help!	This	is	practice	for	the	next	assignment.

Homework:	
Implementing	SinglyLinkedList

• Just	a	step	up	from	the	ones	we’ve	written,	
but	more	focused	on	implementing	the	
essentials	from	the	java.util.List interface

• Will	have	the	usual	linked	list	behavior
– Fast	insertion	and	removal	of	elements	

• Once	we	know	where	they	go	using	an	iterator

– Slow	random	access

TEAM	PROJECT	WORK	TIME

