Linked Lists Part 2

Linked List Implementation

Checkout SinglyLinkedlList project from SVN (Homework)

Checkout LinkedListSimpleGeneric
Checkout CoolPair

Let’s modify our simple linked list to
take arbitrary objects!
* Two ways:

— Object
— Generics

What if we just use object?

LinkedList objectList = new LinkedList();
objectList.addAtBeginning(new Dog("Max", 15));
objectList.addAtBeginning(new Dog("Sammy", 9));
objectList.addAtBeginning(new Dog("Gracie", 4));

n

System.out.println("Average age is: " +

getAverageAge(objectList));

Output: Average age is: 9.333333333333334

The problem with Object

//But what happens if we add a car to that list? because it only knows the
Node values are stored as

objectList.addAtEnd(new Car("Toyota", "Camry")); objects

Java allows us to add a
Car to a list of Dogs,

System.out.println("Average age is: " + getAverageAge(objectList));

Output:

Exception in thread "main" java.lang.ClassCastException:
withObject.Car cannot be cast to withObject.Dog

public static double getAverageAge(LinkedList objectList) {
double totalAge = 0;
int count = 0;

for (ObjeCt o : ObjECtLiSt) { This cast is what causes the
Dog d = (Dog)o; previous code to fail (when it
totalAge += d. getAge() ; tries to cast a Car to a Dog).
But we must have the cast to
count++;

get the age field of the Dog
} objects.

return totalAge/count;

Generics Prevent Type Errors

LinkedList<Dog> doglList = new LinkedList<Dog>();
doglList.addAtBeginning(new Dog("Max", 15));
doglList.addAtBeginning(new Dog("Sammy", 9));
doglList.addAtBeginning(new Dog("Gracie", 4));
//But what happens if we add a car to that list?
doglList.addAtEnd(new Car("Toyota", "Camry"));

Attempting to insert an object that IS NOT a
Dog into the list causes a compilation error dogList is declared as a generic list of Dog

(better since we’d rather it crash for us and objects, so only Dog objects (and objects
not our clients!). that inherit from Dog) can be put in this list.
public static double getAverageAge(LinkedList<Dog> dogList) {
double totalAge = 0;
int count = 0;
for (Dog d : doglList) {
totalAge += d.getAge(); RIR e R alee N R e
count++; cast, because it knows that the objects in the

} list are Dog objects. No possibility for a
runtime error.

return totalAge/count;

Generics Advanced

* Type parameters:
— class DLList<E>

e Bounds:

— class DLList<E extends Comparable>
— class DLList<E extends Comparable<E>>
— class DLList<E extends Comparable<? super E>>

* Generic methods:
— public static <T> void shuffle(T[] array)

What are iterators and why do they
exist?

* |terators are objects designed to encapsulate a
position in a data structure —in the case, a
pointer to a current (and previous) node in a
list

* Your textbook has a detailed discussion of the
operation of linked list iterators, including lots
of sample code

Accessing the Middle of a LinkedList

<<interface>>
<<interface>> Iterator<E>
Iterable<E> f-------- =| boolean hasNext()
lterator<E> iterator() E next()
void remove()

<<interface>>
Listiterator<E>

LinkedList<E> }--------- =| void add(E element)
boolean hasPrevious()
E previous()

I

Why iterators?
They let you write nice for loops!

Enhanced For Loop What Compiler Generates

// do something

// do something

Practice

* Weird warmup: Add an iterator to CoolPair<T>
— Weird: why iterate over a Pair? Oh well.

 Make LinkedListGeneric generic and add an
iterator to it. Notes:

— T could be any object. So will need to change == to
.equals() when comparing things of type T.

e But still use == for Nodes: if (this.current == null) { ...}

— When adding <Integer> to tests, also need to change
the int[] array passed in to Integer[] to match.

— You can test your iterator using a foreach loop in main
— Get help! This is practice for the next assignment.

Homework:
Implementing SinglyLinkedList

* Just a step up from the ones we’ve written,
but more focused on implementing the
essentials from the java.util.List interface

 Will have the usual linked list behavior

— Fast insertion and removal of elements

* Once we know where they go using an iterator

— Slow random access

TEAM PROJECT WORK TIME

