
Exam Review

Generics

Checkout Generics project from SVN

 Business casual

 Think of it as an internal company
presentation, not a presentation to the public

 Five-minute presentation, two minutes for
questions, two minutes for transition to next
team

 Order of teams will be randomly determined

 Do a quick demo of your project
◦ Show off any "extra" features or things that work

well

 What part was your team's biggest challenge?

 Show one or two interesting code snippets
◦ Highlight your good OO design

◦ May show UML or code

 Ask for questions
◦ And ask questions of other teams

 During work time, pick computer for
presentation, get it working with projector

 Exam is Friday, May 30th at 1:00 pm

 Same general format as previous exams

 Same resources:
◦ Paper part: 1 page of notes

◦ Computer part: Open book, notes, computer;
course web pages and ANGEL pages, JDK
documentation, programs in YOUR CSSE220
repositories

 Comprehensive, but focused on Ch 9-18

 May include problems that make sure you
understand your team's project code

oSimple recursion

oMutual recursion

oTime-space trade-offs

oBasic search algorithms

oBinary search, linear
search

oEfficiency, best/worst
case inputs

oBig-oh notation,
estimating big-oh
behavior of code

oFile I/O, exception
handling

oFunction objects

oLinked-list
implementation

oBasic data structure use
and efficiency

oArrayList, LinkedList,
Stack, Queue,
HashSet, TreeSet,
HashMap, TreeMap

oMultithreading (not locks)

 Interfaces, polymorphism, inheritance and abstract
classes

 Exception handling (try, catch, finally, throw, throws)

 OO design and UML class diagrams

 Basic sorting algorithm

 Insertion sort

 Selection sort

 Merge sort

 Big-oh analysis of each

 Generic programming

 Event handling, layout managers, exploring the Swing
documentation

 Your LodeRunner implementation

Another way to make code
more re-useful

 Java Collections just stored Objects
◦ This was better than creating different collection

classes for each kind of object to be stored

◦ Could put anything in them because of
polymorphism

 Used class casts to get the types right:
◦ ArrayList songs = new ArrayList();
songs.add(new Song("Dawn Chorus", "Modern English"));
…
Song s = (Song) songs.get(1);

◦ songs.add(new Artist("A Flock of Seagulls"));
Song t = (Song) songs.get(2);

Q1run-time error

 Can define collections and other classes
using type parameters
◦ ArrayList<Song> songs = new ArrayList<Song>();
songs.add(new Song("Dawn Chorus", "Modern English"));
…
Song s = songs.get(1); // no cast needed

◦ songs.add(new Artist("A Flock of Seagulls"));

 Lets us use these classes:
◦ in a variety of circumstances

◦ with strong type checking

◦ without having to write lots of casts

compile-time
error

Q2

 Create a doubly linked list

 Include min() and max() methods

 Use polymorphism rather than null checks for
the start and end of the list

 Include fromArray() factory method

Q3-Q5

 Type parameters:
◦ class DLList<E>

 Bounds:
◦ class DLList<E extends Comparable>

◦ class DLList<E extends Comparable<E>>

◦ class DLList<E extends Comparable<? super E>>

 Generic methods:
◦ public static <T> void shuffle(T[] array)

 http://docs.oracle.com/javase/tutorial/java/generics/index.html

Q6-7, turn in

