
Recursion

Checkout Recursion project from SVN

 Monday 10/28

 If you got a D or F on Exam 1, please be
aware of this policy (from the course
syllabus):
◦ You must earn a C grade on at least one exam in

order to earn a C in the course.

◦ You must have a passing average on the exams in
order to pass the course.

 Previous exams (and you know I tend to
follow them closely) are posted on day 21 on
the schedule

 By Douglas
Hofstadter

 Argues that a major
component of
intelligence is our
ability to think
about thinking

 A solution technique where the same
computation occurs repeatedly
as the problem is solved

 Examples:
◦ Sierpinski Triangle: tonight’s HW

◦ Towers of Hanoi:
http://www.mathsisfun.com/games/towerofhanoi.html

or search for Towers of Hanoi

recurs

http://www.mathsisfun.com/games/towerofhanoi.html
http://www.mathsisfun.com/games/towerofhanoi.html
http://www.mathsisfun.com/games/towerofhanoi.html

 A solution technique where the same
computation occurs repeatedly
as the problem is solved

recurs

 If each red block has
area 1, what is the area
A(n) of the Triangle
whose width is n?
◦ Answer:

 A(n) = n + A(n-1)

 The above holds for
which n ? What is the
answer for other n ?
◦ Answer: The recursive

equation holds for
n >= 1.
For n = 0, the area is 0.

Triangle with width 1

Triangle with width 2

Triangle with width 3

Triangle with width 4

Thanks to David
Gries for this
technique

parameters
and local variables

method name, line number scope box

1. Draw box when method starts

2. Fill in name and first line no.

3. Write class name (for
static method) or draw
reference to object (for
non-static method)

4. List every parameter
and its argument value.

5. List every local variable declared
in the method, but no values yet

6. Step through the method, update the line number
and variable values, draw new frame for new calls

7. “Erase” the frame when the method is done. Q1-Q2

 Trace the buildShape(MAX_DEPTH) method
call in shapes.Main’s main method

 Always have a base case that doesn’t recurse

 Make sure recursive case always makes
progress, by solving a smaller problem

 You gotta believe
◦ Trust in the recursive solution

◦ Just consider one step at a time

 Add a recursive
method to Sentence
for computing
whether Sentence is
a palindrome

Sentence

String text

String toString()
boolean isPalindrome

 Our isPalindrome() makes lots of new
Sentence objects

 We can make it better with a “recursive helper
method”
 Many recursive problems require a helper method

public boolean isPalindrome() {

 return isPalindrome(0, this.text.length() – 1);

}

Position of first letter of the

remaining String to check

Position of last letter of the

remaining String to check

 Reverse a string…recursively!

 A recursive helper can make this really short!

 “If you already know what recursion is, just
remember the answer. Otherwise, find
someone who is standing closer to Douglas
Hofstadter than you are; then ask him or her
what recursion is.”
 —Andrew Plotkin

 Head to
http://codingbat.com/java/Recursion-1 and
solve 5 problems. I personally like
bunnyEars, bunnyEars2, count7, fibonacci,
and noX

 Get help from me if you get stuck

 Then take a look at the recursion homework
(due tomorrow midnight)

http://codingbat.com/java/Recursion-1
http://codingbat.com/java/Recursion-1
http://codingbat.com/java/Recursion-1
http://codingbat.com/java/Recursion-1

 Factorial:

 Ackermann function:

Base Case

Recursive step

