
Sierpiński, Recursion and
Efficiency, Mutual Recursion

Checkout Recursion2 and
SortingAndSearching projects from SVN

 Any method that calls itself
◦ On a simpler problem
◦ So that it makes progress toward completion
◦ Indirect recursion: May call another method which

calls back to it.

 When implementing a recursive definition
 When implementing methods on recursive

data structures

 Where parts of the whole look like smaller
versions of the whole

 Q1

 The pros
◦ easy to implement,
◦ easy to understand code,
◦ easy to prove code correct

 The cons
◦ Sometimes takes more space and time than

equivalent iterative solution
◦ Why?
 because of function calls

Q2

 Always have a base case that doesn’t recurse

 Make sure recursive case always makes
progress, by solving a smaller problem

 You gotta believe
◦ Trust in the recursive solution
◦ Just consider one step at a time

http://recursivelyrecursive.files.wordpress.com/2010/11/clip_image002.jpg

 Why does recursive Fibonacci take so long?!?

 Can we fix it?

Q3

 Save every solution we find to sub-problems

 Before recursively computing a solution:
◦ Look it up
◦ If found, use it
◦ Otherwise do the recursive computation

Q4

 A deep discovery of computer science

 In a wide variety of problems we can tune the
solution by varying the amount of storage
space used and the amount of computation
performed

 Studied by “Complexity Theorists”

 Used everyday by software engineers

 2 or more methods call each other repeatedly
◦ E.g., Hofstadter Female and Male Sequences

◦ In how many positions do the sequences differ

among the first 50 positions? first 500? first 5,000?
first 5,000,000?

Q5

http://en.wikipedia.org/wiki/Hofstadter_sequence

http://en.wikipedia.org/wiki/Hofstadter_sequence
http://en.wikipedia.org/wiki/Hofstadter_sequence

Recursion Recap
of 3 Rules

Let’s see…

Shlemiel the Painter

Shlemiel gets a job as a street painter, painting the dotted
lines down the middle of the road. On the first day he takes
a can of paint out to the road and finishes 300 yards of the
road. "That's pretty good!" says his boss, "you're a fast
worker!" and pays him a kopeck.

The next day Shlemiel only gets 150 yards done. "Well,
that's not nearly as good as yesterday, but you're still a fast
worker. 150 yards is respectable," and pays him a kopeck.

The next day Shlemiel paints 30 yards of the road. "Only
30!" shouts his boss. "That's unacceptable! On the first day
you did ten times that much work! What's going on?"

"I can't help it," says Shlemiel. "Every day I get farther and
farther away from the paint can!"

 Be able to describe basic sorting algorithms:
◦ Selection sort
◦ Insertion sort
◦ Merge sort

 Know the run-time efficiency of each
 Know the best and worst case inputs for each

 Basic idea:
◦ Think of the list as having a sorted part (at the

beginning) and an unsorted part (the rest)

◦ Find the smallest value

in the unsorted part
◦ Move it to the end of the

sorted part (making the
sorted part bigger and the
unsorted part smaller)

Repeat until
unsorted part is
empty

 Profiling: collecting data on the run-time
behavior of an algorithm

 How long does selection sort take on:
◦ 10,000 elements?
◦ 20,000 elements?
◦ …
◦ 80,000 elements?

Q6

 Analyzing: calculating the performance of an
algorithm by studying how it works, typically
mathematically

 Typically we want the relative performance as
a function of input size

 Example: For an array of length n, how many
times does selectionSort() call
compareTo()?

Handy Fact

Q7-Q12

 In analysis of algorithms we care about
differences between algorithms on very large
inputs

 We say, “selection sort takes on the order of
n2 steps”

 Big-Oh gives a formal definition for
“on the order of”

Q13

 We write f(n) = O(g(n)), and
say “f is big-Oh of g”

 if there exists positive constants c and n0 such that
 0 ≤ f(n) ≤ c g(n)

for all n > n0
 g is a ceiling on f

csse220-201330-LR01,abeggleg,araujol,greenwpd
csse220-201330-LR02,benshorm,mcnelljd,woodjl
csse220-201330-LR03,daruwakj,holzmajj,kadelatj
csse220-201330-LR04,gauvrepd,hazzargm,songh1
csse220-201330-LR05,gouldsa,malikjp,olivernp
csse220-201330-LR06,griffibp,heathpr,tebbeam
csse220-201330-LR07,litwinsh,plugerar,shumatdp
csse220-201330-LR08,adamoam,alayonkj,vanakema
csse220-201330-LR09,bochnoej,johnsotb,tatejl
csse220-201330-LR10,calhouaj,cheungnj,walthecn
csse220-201330-LR11,evansc,wagnercj,roccoma

csse220-201330-LR12,haloskzd,mookher,stephaje
csse220-201330-LR13,hullzr,naylorbl,winterc1
csse220-201330-LR14,johnsoaa,kethirs,wrightj3
csse220-201330-LR15,liuj1,phillics,zhoup

Q14-15

	CSSE 220�Day 14
	Slide Number 2
	Recap: What are recursive methods?
	When should recursive methods be used?
	The pros and cons of recursive methods
	Recap: Key Rules to Using Recursion
	Slide Number 7
	HW: Sierpinski
	Can one little Fib hurt?
	Memoization
	Classic Time-Space Trade Off
	Mutual Recursion
	Slide Number 14
	What is sorting?
	Why study sorting?
	Slide Number 17
	Course Goals for Sorting: �You should…
	Selection Sort
	Profiling Selection Sort
	Analyzing Selection Sort
	Big-Oh Notation
	Formally
	LodeRunner Teams
	Cont.
	Homework: Sierpinski Carpet

