
Event Based Programming

Check out EventBasedProgramming from SVN

Exam 2 is less than 2 weeks away!
First day of 8th week

Layout in Java windows

 JFrame’s add(Component c) method
◦ Adds a new component to be drawn
◦ Throws out the old one!

 JFrame also has method
add(Component c, Object constraint)
◦ Typical constraints:
 BorderLayout.NORTH, BorderLayout.CENTER
◦ Can add one thing to each “direction”, plus center

 JPanel is a container (a thing!) that can display
multiple components

Q1-2

So, how do we do this?

 To update graphics:
◦ We tell Java library that we need to be redrawn:
 space.repaint()
◦ Library calls paintComponent() when it’s ready

 Don’t call paintComponent() yourself! It’s

just there for Java’s call back.

Q3

public interface MouseListener {
 public void mouseClicked(MouseEvent e);
 public void mouseEntered(MouseEvent e);
 public void mouseExited(MouseEvent e);
 public void mousePressed(MouseEvent e);
 public void mouseReleased(MouseEvent e);
}

Q4

 Sometimes a new class is a
special case of the concept
represented by another

 Can “borrow” from an
existing class, changing just
what we need

 The new class inherits from
the existing one:
◦ all methods
◦ all instance fields

Q5

 class SavingsAccount extends BankAccount
◦ adds interest earning, keeps other traits

 class Employee extends Person
◦ adds pay information and methods, keeps other

traits

 class Manager extends Employee
◦ adds information about employees managed,

changes the pay mechanism, keeps other traits

 class SavingsAccount extends BankAccount {
 // added fields
 // added methods
}

 Say “SavingsAccount is a BankAccount”

 Superclass: BankAccount

 Subclass: SavingsAccount

Q6

The “superest”
class in Java

Still means
“is a”

Solid line
shows

inheritance

Q7

 class ClickHandler implements MouseListener

◦ ClickHandler promises to implement all the

methods of MouseListener

 class CheckingAccount extends BankAccount

◦ CheckingAccount inherits (or overrides) all the

methods of BankAccount

For client code
reuse

For
implementation

code reuse

 Inherit methods unchanged

 Override methods
◦ Declare a new method with same signature to use

instead of superclass method

 Add entirely new methods not in superclass

Q8

 ALWAYS inherit all fields unchanged

 Can add entirely new fields not in superclass

DANGER! Don’t use
the same name as a

superclass field!

Q9

 Calling superclass method:
◦ super.methodName(args);

 Calling superclass constructor:
◦ super(args);

Must be the first
line of the subclass

constructor

Q10

 A subclass instance is a superclass instance
◦ Polymorphism still works!
◦ BankAccount ba = new CheckingAccount();
ba.deposit(100);

 But not the other way around!
◦ CheckingAccount ca = new BankAccount();
ca.deductFees();

 Why not? BOOM!

For client code reuse

Q11

 Can use:
◦ public void transfer(double amt, BankAccount o){
 this.withdraw(amount);
 o.deposit(amount);
}
in BankAccount

 To transfer between different accounts:
◦ SavingsAccount sa = …;
◦ CheckingAccount ca = …;
◦ sa.transfer(100, ca);

 Hybrid of superclasses and interfaces
◦ Like regular superclasses:
 Provide implementation of some methods
◦ Like interfaces
 Just provide signatures and docs of other methods
 Can’t be instantiated

 Example:
◦ public abstract class BankAccount {
 /** documentation here */
 public abstract void deductFees();
 …
}

Elided methods as before

Also look at
the code in
the shapes
package,
especially
ShapesDemo
(during or
after class)

 Review
◦ public—any code can see it
◦ private—only the class itself can see it

 Others
◦ default (i.e., no modifier)—only code

in the same package can see it
 good choice for classes
◦ protected—like default, but

subclasses also have access
 sometimes useful for helper methods

Bad
for

fields!

Q12

Demo
UML Design Questions

Linear Lights Out

It's a solo project, but feel free
to talk with others as you do
it.

And to ask
instructor/assistants for help

Q13-Q14

BigRational from HW 10
BoardGames from HW 10

	CSSE 220 Day 10
	Questions?
	Time to Make�the Buttons
	Key Layout Ideas
	Slide Number 6
	Repaint (and thin no more)
	Mouse Listeners
	Inheritance
	Examples
	Notation and Terminology
	Inheritance in UML
	Interfaces vs. Inheritance
	Inheritance Run Amok?
	With Methods, Subclasses can:
	With Fields, Subclasses:
	Super Calls
	Polymorphism and Subclasses
	Another Example
	Abstract Classes
	Access Modifiers
	BallWorlds Introduction
	Work Time
	Work Time

