
Sierpiński, Recursion and
Efficiency, Mutual Recursion

Checkout Recursion2 project from SVN

}  Any method that calls itself
◦  On a simpler problem
◦  So that it makes progress toward completion
◦  Indirect recursion: May call another method which

calls back to it.

}  When implementing a recursive definition
}  When implementing methods on recursive

data structures

}  Where parts of the whole look like smaller
versions of the whole

Q1

}  The pros
◦  easy to implement,
◦  easy to understand code,
◦  easy to prove code correct

}  The cons
◦  Sometimes takes more space and time than

equivalent iterative solution
◦  Why?
�  because of function calls

Q2

}  Always have a base case that doesn’t recurse

}  Make sure recursive case always makes
progress, by solving a smaller problem

}  You gotta believe
◦  Trust in the recursive solution
◦  Just consider one step at a time

HW 11 & 12: Sierpinski Triangle

}  Why does recursive Fibonacci take so long?!?

}  Can we fix it?

Q3

}  Save every solution we find to sub-problems

}  Before recursively computing a solution:
◦  Look it up
◦  If found, use it
◦  Otherwise do the recursive computation

Q4

}  A deep discovery of computer science

}  In a wide variety of problems we can tune the
solution by varying the amount of storage
space used and the amount of computation
performed

}  Studied by “Complexity Theorists”

}  Used everyday by software engineers

}  2 or more methods call each other repeatedly
◦  E.g., Hofstadter Female and Male Sequences

 

◦  In how many positions do the sequences differ

among the first 50 positions? first 500? first 5,000?
first 5,000,000?

Q5

http://en.wikipedia.org/wiki/Hofstadter_sequence

HW 12: Sierpinski Carpet

Q6-7

