CSSE 220 Day 12

Sierpiński, Recursion and Efficiency, Mutual Recursion

Checkout *Recursion2* project from SVN

Bizarro

Recap: What are recursive methods?

Any method that calls itself

- On a simpler problem
- So that it makes progress toward completion
- Indirect recursion: May call another method which calls back to it.

When should recursive methods be used?

- When implementing a recursive definition
- When implementing methods on recursive data structures

Where parts of the whole look like smaller versions of the whole

The pros and cons of recursive methods

The pros

- easy to implement,
- easy to understand code,
- easy to prove code correct

The cons

- Sometimes takes more space and time than equivalent iterative solution
- Why?
 - because of function calls

Recap: Key Rules to Using Recursion

- Always have a base case that doesn't recurse
- Make sure recursive case always makes progress, by solving a smaller problem

You gotta believe

- Trust in the recursive solution
- Just consider one step at a time

HW: Sierpinski

Work Time WW 11 & 12: Sierpinski Triangle

Can one little Fib hurt?

Why does recursive Fibonacci take so long?!?

• Can we fix it?

```
private static long fib(int n) {
    // TODO: Convert this to use memoization.
    long f;
    if (n <= 2) {
        f = 1;
    } else {
        long fNMOne = fib(n - 1);
        long fNMTwo = fib(n - 2);
        f = fNMOne + fNMTwo;
    }
    return f;
}</pre>
```


Memoization

Save every solution we find to sub-problems

- Before recursively computing a solution:
 - Look it up
 - If found, use it
 - Otherwise do the recursive computation

Classic Time-Space Trade Off

A deep discovery of computer science

- In a wide variety of problems we can tune the solution by varying the amount of storage space used and the amount of computation performed
- Studied by "Complexity Theorists"

Used everyday by software engineers

Mutual Recursion

- > 2 or more methods call each other repeatedly
 - E.g., Hofstadter Female and Male Sequences

$$F(n) = \begin{cases} 1 & \text{if } n = 0\\ n - M(F(n-1)) & \text{if } n > 0 \end{cases}$$
$$M(n) = \begin{cases} 0 & \text{if } n = 0\\ n - F(M(n-1)) & \text{if } n > 0 \end{cases}$$

 In how many positions do the sequences differ among the first 50 positions? first 500? first 5,000? first 5,000,000?

http://en.wikipedia.org/wiki/Hofstadter sequence

00

Sierpinski Carpet

123										8.38	3873	E 185	3873	
			10110	8 80		101101	1010	8 8						101
101			<u></u>											
											1			
											1			
		6-E.,			B.L.,			ēē						
64			8.8.		R.A.				내님	8-8				
H														
闁	-								一月			-	-	
盰									Ħ	80	•		78	
	- 1													
											100	1.11		
10														
11														
											363		40	
								11						
					B.B.,			ii						
68											.			
闄														
闄	-							6						
8.8								AR. 8		ei16				

Work Time HW 12: Sierpinski Carpet

