
Linked List Implementation

Checkout LinkedLists project from SVN

Understanding the
engineering trade-offs when
storing data

 Efficient ways to store data based on how
we’ll use it

 The main theme for the rest of the course

 So far we’ve seen ArrayLists
◦ Fast addition to end of list
◦ Fast access to any existing position
◦ Slow inserts to and deletes from middle of list

Q1

 What if we have to add/remove data from a
list frequently?

 LinkedLists support this:
◦ Fast insertion and removal of elements
 Once we know where they go
◦ Slow access to arbitrary elements

data

data

data

data

data null

Insertion, per Wikipedia

“random access”

Q2, Q3

 void addFirst(E element)
 void addLast(E element)
 E getFirst()
 E getLast()
 E removeFirst()
 E removeLast()

 What about accessing the middle of the list?
◦ LinkedList<E> implements Iterable<E>

Enhanced For Loop What Compiler Generates

for (String s : list) {
 // do something
}

Iterator<String> iter =
 list.iterator();

while (iter.hasNext()) {
 String s = iter.next();
 // do something
}

 A simplified version, with just the essentials

 Won’t implement the java.util.List interface

 Will have the usual linked list behavior
◦ Fast insertion and removal of elements
 Once we know where they go
◦ Slow random access

LodeRunner next cycle due
tomorrow

	CSSE 220 Day 26
	Questions
	Data Structures
	Data Structures
	Another List Data Structure
	LinkedList<E> Methods
	Accessing the Middle of a LinkedList
	An Insider’s View
	Implementing LinkedList
	Team Project Work Tine

