
Name:

CSSE 220—Object-Oriented Software Development

Exam 2, Oct. 30, 2008
This exam consists of two parts. Part 1 is to be solved on these pages. You may use the back of
a page if you need more room. Please indicate on the front if you do so. Part 2 is to be solved
using your computer. You will need network access to download template code and upload your
solution for part 2. Please disable IM, email, and other such communication programs before
beginning the exam.

Resources for Part 1: Open book and notes, closed computer.

Resources for Part 2: Open book, notes, and computer. Limited network access. You may use
the network only to access your own files, the course ANGEL site and web pages, the textbook’s
site, Sun’s Java website, and Logan Library’s Safari Tech Books Online. Any communication with
anyone other than the instructor or a TA during the exam may result in a failing grade for the
course.

Parts 1 and 2 are included in this document. You should read over all of the questions before
beginning work, but. . .

You must turn in part 1 before accessing the resources for part 2.

Problem Poss. Pts. Earned
1 8
2 12
3 16
4 4
5 2
6 6
7 4
8 18
9 6

Paper Part Subtotal 76

C1. MyDotter dots() 4
C1. MyDotter leftClickAt() 4

C1. MyDotter rightClickAt() 4
C2. Sentence find() (1 per unit test) 6

C2. Sentence indexOf() (1 per unit test) 6
Computer Part Subtotal 24

Total 100

1

Part 1—Paper Part
1. (8 points) Define cohesion and coupling and explain why the two properties are often in op-
position.

2. (12 points) This problem is a design exercise. First read the problem description below, then
answer the questions.

Design a program to track student report cards for all the students at Big Research University
(BRU). A report card at BRU lists courses, instructors, midterm and final grades, credits for each
course and total for the term, cumulative and term GPA, and the student’s major.

a. List several candidate classes that you might use in implementing a solution to the prob-
lem:

b. Pick one of your candidate classes, circle it above and briefly describe three responsibili-
ties that it might have:

•

•

•

c. Still considering your chosen class from part b, with what other classes might it need to
collaborate?

2

3. (16 points) Use this UML class diagram to answer the subsequent questions.

Main

FractalDrawer

Color getForegroundColor()
Color getBackgroundColor()
Dimension getSize()

Color baseColor
Color foreColor
int INSET
double STOP

AbstractSierpinski

SierpinskiCarpet SierpinskiTriangle

registerDrawer(FractalDrawer drawer)
drawOn(Graphics2D graphics)

<<interface>>
Fractal

MandelbrotSet

JComponent

constructs

constructs

constructs

a. Which class or classes construct(s) instance of FractalDrawer?

b. If the Fractal interface changes, what other classes or interfaces might be affected?

c. What does the SierpinskiTriangle class inherit from AbstractSierpinski?

3

4. (4 points) Describe a circumstance where you would make a method protected.

5. (2 points) (Check all that apply.) Major difference(s) between an interface and an abstract
class is/are:

An interface cannot provide instance fields or implementations of methods, but an ab-
stract class can do so.

An interface cannot be instantiated, but an abstract class can be.

They are two words for the same idea, so there is no difference.

An abstract class cannot be instantiated, but an interface can be.

6. (6 points) Thinking about the Ball Worlds programming project. . .

a. Why did it make sense for Shrinker and Exploder to inherit from Bouncer?

b. Why didn’t Exploder inherit from Shrinker?

7. (4 points) What has been the most challenging part of the Vector Graphics programming
project thus far?

4

8. (18 points) Consider the following two classes:

class One {
public void alpha() {

System.out.print("A");
this.beta();

}

public void beta() {
System.out.println("B");

}
}

class Two extends One {
public void beta() {

System.out.println("C");
}
public void gamma() {

System.out.println("D");
}

}

Suppose we declare and initialize these variables:
One p = new One();
One q = new Two();
Two r = new Two();

For each line of code below, circle what would be output. If a line would give an error, then
circle the type of error. Consider each line separately. That is, if a line would give an error, then
assume that line doesn’t affect any others.

Code Output Choices (circle one in each line)

p.gamma(); AB AC B C D runtime error compile error

q.gamma(); AB AC B C D runtime error compile error

r.gamma(); AB AC B C D runtime error compile error

p.beta(); AB AC B C D runtime error compile error

q.beta(); AB AC B C D runtime error compile error

r.beta(); AB AC B C D runtime error compile error

p.alpha(); AB AC B C D runtime error compile error

q.alpha(); AB AC B C D runtime error compile error

r.alpha(); AB AC B C D runtime error compile error

5

9. (6 points) For this problem use the frame technique we practiced in class and the class dec-
laration at left. Trace the execution of the call g(4) in main() and answer the question at the
bottom of the page. A frame template is provided for your reference.

public class Recur {
public static void main(String[] args) {

int answer = g(4);
System.out.println(answer);

}

private static int g(int n) {
if (n == 0)

return 1;
int p = g(n - 1);
return n - p;

}
}

parameters and
local variables

methodName, line number scope box

For the code above, what would the final output be?

6

Name:

Part 2—Computer Part
Resources for Part 2: Open book, notes, and computer. Limited network access. You may use
the network only to access your own files, the course ANGEL site and web pages, the textbook’s
site, Sun’s Java website, and Logan Library’s Safari Tech Books Online. Any communication with
anyone other than the instructor or a TA during the exam may result in a failing grade for the
course.

You must turn in the preceding pages
before accessing the resources for part 2.

Instructions. You must actually get these problems working on your computer. Almost all of
the credit for this problem will be for code that actually works. There are several different small
methods to write, so you can get a lot of partial credit by getting some of them to work. If you get
every part working, comments are not required. If you do not get a method to work, comments
may help me to understand enough so I can give you (a small amount of) partial credit.

After you have handed in part 1, begin part 2 by checking out the project named Exam2 from
your course SVN repository. (Ask for help immediately if you are unable to do this.)

When you have finished the problems, and more frequently if you wish, you should submit
your code by committing it to your SVN repository. We will check commit logs, so you must be
careful not to commit anything after the end of the exam. For grading, we will ensure that the
included JUnit tests have not been changed.

Problem Descriptions

C1. (12 points) The package dots contains an interface Dotter. The class MyDotter in that pack-
age is declared to implement Dotter. Your task is to:

a. study the Dotter interface

b. study the use of the interface in DotDisplay, and

c. finishing the implementation of MyDotter.

To test your program, run the dot.Main class. With a correct implementation, left-clicks in the
window will add orange circles to the display. Right-clicks will add orange squares. The Dotter
interface is shown in Figure 1 on page 8

C2. (12 points) This problem is about recursion. The class Sentence in the text package includes
stubs and documentation for two methods that you should implement. Your solutions must
use recursion. Figure 2 on page 9 shows the stubs and documentation. You’ll find JUnit tests for
this problem in SentenceTest.

Hints:

• For find(), if the text starts with the string you want to match, then you’re done.

• For indexOf(), think about adding 1 to the result of a recursive call.

7

package dots;

import java.awt.Shape;
import java.util.ArrayList;

/**
* Implementations of this interface store lists of dots at given coordinates.
* "Dots" may be circles or squares.
*
* @author Curt Clifton
*/

public interface Dotter {
/**
* @return a list of all the "dots" in this collection
*/
ArrayList<Shape> dots();

/**
* Adds a "dot" to this collection at the given coordinates.
*
* @param x
* @param y
*/

void leftClickAt(int x, int y);

/**
* Adds a "dot" to this collection at the given coordinates.
*
* @param x
* @param y
*/

void rightClickAt(int x, int y);
}

Figure 1: Dotter interface.

8

package text;

/**
* This class implements a sentence with some basic search methods.
*
* @author Curt Clifton.
*/

public class Sentence {
private String text;

/**
* Constructs a sentence object with the given text.
*
* @param text
*/

public Sentence(String text) {
this.text = text;

}

/**
* Searches for the given string in this sentence.
*
* @param t
* @return true if t is in this sentence
*/

public boolean find(String t) {
// TODO: implement this method recursively, you may use a helper method
throw new RuntimeException("delete this line");

}

/**
* Finds the starting position of the first substring of this sentence that
* matches the given string. Or returns -1 if t is not a substring of this
* sentence.
*
* @param t
* @return the starting position, or -1 if not found
*/

public int indexOf(String t) {
// TODO: implement this method recursively, you may use a helper method
throw new RuntimeException("delete this line");

}
}

Figure 2: Sentence class with documented stubs to be implemented recursively.

9

