2/9/2012

CSSE 220 Day 26

Linked List Implementation
Data-structure-palooza

Checkout LinkedLists project from SVN

Questions

2/9/2012

Data Structures

Understanding the

engineering trade-offs when
storing data

Data Structures

» Efficient ways to store data based on how
we’ll use it

» The main theme for the rest of the course

» So far we’ve seen ArrayLists
- Fast addition to end of list
> Fast access to any existing position
> Slow inserts to and deletes from middle of list

&]

2/9/2012

Another List Data Structure

» What if we have to add/remove data from a
list frequently?

» LinkedLists support this:
- Fast insertion and removal of elements

- Once we know where they go
> Slow access to arbitrary elements

“random access”

data
newNode newNode 1
B B
A N
—> A [ol c| >
node node.next node |ngertion, per Wikipedia

LinkedList<E> Methods

» void addFirst(E element)
» void addLast(E element)
» E getFirst()

» E getLast()

» E removeFirst()

» E removeLast()

» What about accessing the middle of the list?
o LinkedList<E> implements lterable<E>

2/9/2012

Accessing the Middle of a

LinkedList
<<interface>>
<<interface>> Iterator<E>
Iterable<E> f-------- =| boolean hasNex1()
lterator<E> iterator() E next()
void remove()

. <<interface>>

Listiterator<E>
LinkedList<E> F--------- =| void add(E element)
boolean hasPrevious()
E Brevious[)

An Insider’s View

for (String s : list) { Iterator<String> iter =
// do something list_iterator();
}
whille (iter.hasNext()) {
String s = iter_.next();
// do something
}

Enhanced For Loop What Compiler Generates

Implementing LinkedList

» A simplified version, with just the essentials

» Won’t implement the java.util.List interface

» Will have the usual linked list behavior
- Fast insertion and removal of elements
- Once we know where they go
> Slow random access

Abstract Data Types (ADTs)

» Boil down data types (e.g., lists) to their
essential operations

» Choosing a data structure for a project then
becomes:
- ldentify the operations needed

- ldentify the abstract data type that most efficient
supports those operations

» Goal: that you understand several basic
abstract data types and when to use them

2/9/2012

Common ADTs

» Array List
» Linked List
» Stack

» Queue

» Set

» Map

Implementations for all of these are
provided by the
in the

package.

Array Lists and Linked Lists

Provided Efficiency Efficiency
Random access o() O(n)
Add/remove item O(n) o(1)

2/9/2012

Stacks

» A last-in, first-out (LIFO) data structure

» Real-world stacks
- Plate dispensers in the cafeteria
> Pancakes!

» Some uses:
> Tracking paths through a maze
> Providing “unlimited undo” in an application

Operations Efficiency
Provided

Push item o(1) and
Java
Pop item o(1)

Implemented by

Queues

» A first-in, first-out (FIFO) data structure

» Real-world queues
> Waiting line at the BMV
> Character on Star Trek TNG

» Some uses:
> Scheduling access to shared resource (e.g., printer)

Provided Implemented by

Enqueue item o) and
Dequeue item o(1) in Java

2/9/2012

Sets

» Unordered collections without duplicates

» Real-world sets
> Students
> Collectibles
» Some uses:
> Quickly checking if an item is in a collection

Add/remove item o) O(lg n)

Contains? o() O(lg n)
B EXE o
an hog space orts items!

.

Maps

» Associate keys with values

» Real-world “maps”
> Dictionary
> Phone book

» Some uses:
> Associating student ID with transcript
> Associating name with high scores

Operations | “HashMap | TreeMap

Insert key-value pair o(1) O(lg n)
Look up value for key o) O(lg n)

% Can hog space

.

2/9/2012

2/9/2012

Team Project Work Tine

If by some miracle there is
anytime left

